£_ RMO0046
7[Reference manual
SPC560P34/SPC560P40 32-bit MCU family
built on the embedded Power Architecture®

Introduction

The SPC560P40/34 microcontroller is built on the Power Architecture® platform. The Power
Architecture based 32-bit microcontrollers represent the latest achievement in integrated
automotive application controllers. This device family integrates the most advanced and up-
to-date motor control design features.

The safety features included in SPC560P40/34 (such us fault collection unit, safety port or
flash memory and SRAM with ECC) support the design of system applications where safety
is a requirement.

September 2013 Doc ID 16912 Rev 5 1/936

www.st.com

http://www.st.com

Contents RMO0046
Contents

Prefaceo i e e et 45

OV W . . o e 45

AUdiBNCE. . . . 45

Chapter organization and device-specific information 45

Referenceso e 45

1 Introduction 46

1.1 The SPC560P40/34 microcontroller family 46

1.2 Target applications e 47

1.2.1 Applicationexamples 47

1.3 Features e 48

1.4 Critical performance parameters 52

1.5 Chip-level features 52

1.6 Module features 53

1.6.1 High performance €200z0 core processorvovviennnn.. 53

1.6.2 Crossbar switch (XBAR) 54

1.6.3 Enhanced direct memory access (eDMA) 54

1.6.4 Flash memory 55

1.6.5 Static random access memory (SRAM) 56

1.6.6 Interrupt controller (INTC) i 56

1.6.7 System status and configuration module (SSCM) 57

1.6.8 System clocks and clock generation 57

1.6.9 Frequency-modulated phase-locked loop (FMPLL) 57

1.6.10 Mainoscillator e 58

1.6.11 InternalRCoscillator 58

1.6.12 Periodic interrupt timer (PIT) i 58

1.6.13 Systemtimermodule (STM) i, 58

1.6.14 Software watchdog timer (SWT) it 58

1.6.15 Faultcollection unit (FCU) 59

1.6.16 System integrationunit—Lite (SIUL) 59

1.6.17 Bootandcensorship i 59

1.6.18 Error correction status module (ECSM) 60

1.6.19 Peripheral bridge (PBRIDGE) 60

2/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
1.6.20 Controller area network (FIexCAN) 60

1.6.21 Safety port (FIexCAN) e 61

1.6.22 Serial communication interface module (LINFlex) 62

1.6.23 Deserial serial peripheral interface (DSPI) 62

1.6.24 Pulse width modulator (FlexPWM) 63

1.6.25 eTimer ... e 64

1.6.26 Analog-to-digital converter (ADC) module 65

1.6.27 Crosstriggeringunit (CTU) 65

1.6.28 Nexus Development Interface (NDI) 66

1.6.29 Cyclic redundancy check (CRC) 66

1.6.30 IEEE 1149.1 JTAG controller i, 66

1.6.31 On-chip voltage regulator (VREG) 67

1.7 Developer environment 67

1.8 Package 67

2 SPC560P40/34 MemMOry Map. . .« oo v et tnnn et snnnnssnnnnnesnns 69
3 Signal Description it it i 72
3.1 100-pin LQFP pinout e 72

3.2 64-pin LQFP pinout 74

3.3 Pin description e 75

3.3.1 Power supply and reference voltage pins 75

3.3.2 System pPiNS 76

3.3.3 Pin multiplexing 77

3.4 CTU/ ADC / FlexPWM / eTimer connections 88

4 ClockDescription. ittt e s st nnnnns 91
41 Clock architecture i e 91

4.2 Available clock domains 94

4.2.1 FMPLL input reference clock 94

422 Clock selectors e 95

42.3 Auxiliary Clock Selector O ... i 95

424 Auxiliary Clock Selector 1 95

4.2.5 Auxiliary Clock Selector2 i 95

4.2.6 Auxiliary clock dividers 95

4.2.7 External clock divider 95

ﬂ Doc ID 16912 Rev 5 3/936

Contents RMO0046
4.3 Alternate module clock domains 96
4.3.1 FlexCAN clockdomains i 96

43.2 SWT clock domainsot e 96

4.3.3 Cross Triggering Unit (CTU) clockdomains 96

43.4 Peripherals behind the IPS bus clock sync bridge 96

4.4 Clock behaviorin STOP and HALT mode 97
4.5 System clock functional safety 97
4.6 IRC 16 MHz internal RC oscillator (RC_CTL) 98
4.7 XOSC external crystal oscillator 98
4.7 .1 Functional description 99

4.7.2 Register description e 99

4.8 Frequency Modulated Phase Locked Loop (FMPLL) 100
4.8.1 Introduction 100

482 OVIVIBW . . 101

4.8.3 Features 101

48.4 Memory map e 101

4.8.5 Register description 102

4.8.6 Functional description 105

4.8.7 Recommendations 108

4.9 Clock Monitor Unit (CMU) i, 108
4.9.1 OVEIVIBW . o 108

492 Main features 109

4.9.3 Functional description 110

49.4 Memory map and register description 111

5 Clock Generation Module (MC_CGM).ciiivnnnnnnn 116
5.1 OVeIVIEW . . e e 116
5.2 Features 118
5.3 External Signal Description 118
54 Memory Map and Register Definition 118
5.5 Register Descriptions 123
5.5.1 Output Clock Enable Register (CGM_OC_EN) 124

5.5.2 Output Clock Division Select Register (CGM_OCDS_SC) 124

5.5.3 System Clock Select Status Register (CGM_SC_SS) 125

5.5.4 System Clock Divider Configuration Register (CGM_SC_DCO0) 126

5.5.5 Auxiliary Clock 0 Select Control Register (CGM_AC0_SC) 127

4/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
5.5.6 Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0) .. 128

5.5.7 Auxiliary Clock 1 Select Control Register (CGM_AC1_SC) 128

5.5.8 Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0) .. 129

5.5.9 Auxiliary Clock 2 Select Control Register (CGM_AC2_SC) 130

5.5.10 Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0) .. 131

5.6 Functional Description 131

5.7 System Clock Generation 131

5.7.1 System Clock Source Selection 132

5.7.2 System Clock Disable i 132

5.7.3 System Clock Dividers 132

5.8 Auxiliary Clock Generation i 132

5.8.1 Auxiliary Clock Source Selection 134

5.8.2 Auxiliary Clock Dividers 134

5.9 Dividers Functional Descriptiono . 134

5.10 Output Clock Multiplexing e 135

5.11 Output Clock Division Selection 135

6 Mode Entry Module MC_ME)iiiiiiiinnnnnnns 136
6.1 Introduction 136

6.1.1 OVEIVIBW . . 136

6.1.2 Features 138

6.1.3 Modes of Operation i, 138

6.2 External Signal Description 139

6.3 Memory Map and Register Definition 139

6.3.1 Memory Map 139

6.3.2 Register Description 146

6.4 Functional Description 168

6.4.1 Mode Transition Request 168

6.4.2 Modes Details e 169

6.4.3 Mode Transition Process 172

6.4.4 Protection of Mode Configuration Registers 180

6.4.5 Mode Transition Interrupts i 180

6.4.6 Peripheral Clock Gating i e 182

6.4.7 Application Example 182

7 Power Control Unit (MC_PCU)iiiiiiiiinnnnnenns 184
Kﬁ Doc ID 16912 Rev 5 5/936

Contents RMO0046
7.1 Introduction 184

711 OVEIVIBW . . 184

71.2 Features e 184

7.2 External Signal Description i 185

7.3 Memory Map and Register Definition 185

7.3.1 Memory Map e 185

7.3.2 Register Descriptions 186

8 Reset Generation Module MC_RGM).coinnn. 187
8.1 Introduction 187

8.1.1 OVBIVIBW . o ottt e 187

8.1.2 Features e 189

8.1.3 Reset Sources 189

8.2 External Signal Description i 190

8.3 Memory Map and Register Definition 190

8.3.1 Register Descriptions 192

8.4 Functional Description 202

8.4.1 Reset State Machine 202

8.4.2 Destructive Resets 204

8.4.3 External Reset 205

8.4.4 Functional Resets 205

8.4.5 Alternate Event Generation 206

8.4.6 Boot Mode Capturingot 206

9 Interrupt Controller (INTC).ttt i it i s e e e e nns 208
9.1 Introduction e 208

9.2 Features 208

9.3 Block diagram 210

9.4 Modes of operation 210

9.4.1 Normalmode e 210

9.5 Memory map and registers description 212

9.5.1 Module memory mapttt e 212

9.5.2 Registers description e 212

9.6 Functional description e 220

9.6.1 Interrupt request sources 228

9.6.2 Priority management 228

6/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
9.6.3 Handshaking with processor 230

9.7 Initialization/application information 232

9.7.1 Initialization flow 232

9.7.2 Interrupt exception handler L. 232

9.7.3 ISR, RTOS, and task hierarchy 234

9.7.4 Orderofexecution 235

9.7.5 Priority ceiling protocol 236

9.7.6 Selecting priorities according to request rates and deadlines 237

9.7.7 Software configurable interruptrequests 237

9.7.8 Lowering priority withinan ISR 238

9.7.9 Negating an interrupt request outside of its ISR 238

9.7.10 ExaminingLIFOcontents i .. 239

10 System Status and Configuration Module (SSCM)............... 240
10.1 Introduction 240

10.1.1 OVEIVIEW ..ot 240

10.1.2 Features e 240

10.1.3 Modes of operation 241

10.2 Memory map and register description 241

10.2.1 MemMoOry Map ..o e 241

10.2.2 Registerdescription e 241

10.3 Functional description 247

10.4 Initialization/application information 247

10.4.1 Reset ... e 247

11 System Integration UnitLite (SIUL), 248
11.1 Introduction e 248

11.2 OVeIVIEW . . e 248

11.3 Features e 249

11.3.1 Registerprotection 250

11.4 External signal description i 250

11.4.1 Detailed signal descriptions 250

11.5 Memory map and register description 251

1151 SIULMemMOry mapov ettt e 251

11.5.2 Registerdescription e 252

11.6 Functional description 267

Kﬁ Doc ID 16912 Rev 5 7/936

Contents RMO0046
11.6.1 General 267

11.6.2 Padcontrol e 267

11.6.3 General purpose input and output pads (GPIO) 267

11.6.4 Externalinterrupts 268

117 PiInmuxing e 269

12 €200z0 and e200Z0h Core o i i i it iiie i et inaa e cnnnn e 270
12,1 OVeIVIBW . e 270

122 Features 270

12.2.1 Microarchitecture summary i 271

12.3 Core registers and programmers model 275

12.3.1 Unimplemented SPRs and read-only SPRs 278

12.4 Instruction summary e 278

13 Peripheral Bridge (PBRIDGE)iiiiiiiiiinnnnnnnns 279
13.1 Introduction 279

13.1.1 Blockdiagram 279

13.1.2 OVeIVIEW . . 279

13.1.3 Modesof operation 279

13.2 Functional description 280

13.2.1 ACCESS SUPPOI .ot 280

13.2.2 Generaloperationt 280

14 Crossbar SwWitch (XBAR) . ..ottt i sttt e e e e nnnnnns 281
14.1 Introduction 281

14.2 Blockdiagram 281

14.3 OVeIVIEW . .. e 282

14.4 Features 282

145 Modesofoperation........ e 282

1451 Normalmode e 282

1452 Debugmode 282

14.6 Functional description 282

14.6.1 OVEIVIEW . ..ot 282

14.6.2 Generaloperation it e 283

14.6.3 Masterportso 283

14.6.4 Slave pOrtso 284

8/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
14.6.5 Priority assignment e 284

14.6.6 Arbitration e 284

15 Error Correction Status Module (ECSM)t 286
15,1 Introduction 286

15.2 OVeIVIEW . .. e 286

156.3 Features e 286

15.4 Memory map and registers description 286

1541 MemoOry Map .. oot 287

15.4.2 Registersdescription 288

15.4.3 ECSM_reg_protection i 306

16 Internal Static RAM (SRAM)coiiiiiiiii ittt innnnnns 308
16.1 Introduction 308

16.2 SRAMoperatingmode 308

16.3 Module memory mapt e 308

16.4 Registerdescriptions 308

16.5 SRAMECC mechanism 308

16.5.1 Accesstiming 309

16.5.2 Reset effects on SRAM accesses, 310

16.6 Functional description 310

16.7 Initialization and application information 310

17 FlashMemory.oiiiiiiiii ittt ittt nnnnnnnnns 311
17.1 Introduction 311

17.2 Platform Flash controller 311

17.2.1 Introduction 311

17.2.2 Modesofoperation e 313

17.2.3 External signal descriptions 313

17.2.4 Memory map and registers description 313

17.2.5 Functional description 315

17.2.6 Basic interface protocol 315

17.2.7 Access protections e 316

17.2.8 Readcycles—buffermiss i 316

17.2.9 Readcycles—bufferhit, 316

17.210 Writecycles 317

ﬂ Doc ID 16912 Rev 5 9/936

Contents RMO0046
17.2.11 Errortermination e 317
17.212 Accesspipelining e 317
17.2.13 Flash error response operation, 318
17.2.14 BankO page read buffers and prefetch operation 318
17.2.15 Bank1 temporary holding register 320
17.2.16 Read-While-Write functionality 321
17.2.17 Wait state emulation 322
17.2.18 Timing diagramst e 323

17.3 Flashmemory e 330
17.3.1 Introduction e 330

17.3.2 Mainfeatures 330

17.3.3 Blockdiagram 330

17.3.4 Functional description 332

17.3.5 Operatingmodest 336

17.3.6 Registersdescription 339

17.3.7 Registermap e 339

17.3.8 Code Flash programming considerations 370

18 Enhanced Direct Memory Access (eDMA).ccounan. 382
18.1 Introduction 382
18.2 OVeIVIBW ..t e 382
18.3 Features 383
184 Modesofoperation........... 383
18.4.1 Normalmode e e 383

18.42 Debugmode 384

18.5 Memory map and register definition L 384
18.5.1 Memorymapt e 384

18.5.2 Registerdescriptions 386

18.6 Functional description 406
18.6.1 eDMA microarchitecture 406

18.6.2 eDMAbasicdataflow 407

18.6.3 eDMA performancet e 410

18.7 Initialization / application information 414
18.7.1 eDMAiinitialization e 414

18.7.2 DMA programming €rrorSo vt 416

18.7.3 DMArequestassignments 416

10/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
18.7.4 DMA arbitration mode considerations 417

18.7.5 DMATtransfer 417

18.7.6 TCDStatUSot 421

18.7.7 Channellinking e 422

18.7.8 Dynamic programmingot 423

19 DMA Channel Mux (DMA_MUX)cciiiiiiiiiiinnnnnnnns 424
19.1 Introduction 424

19.1.1 OVEIVIEW . .ot 424

19.1.2 Features e 424

19.1.3 Modesof operation 425

19.2 External signal description 425

19.2.1 OVeIVIBW . ..o e 425

19.3 Memory map and register definition L. 425

19.3.1 Memory mapo e 425

19.3.2 Registerdescriptions 427

19.4 DMArequestmappingttt 428

19.5 Functional description e 429

19.5.1 DMA channels with periodic triggering capability 429

19.5.2 DMA channels with no triggering capability 432

19.6 Initialization/application information 432

19.6.1 ReSet ... e 432

19.6.2 Enabling and configuringsources 432

20 Deserial Serial Peripheral Interface (DSPI) 437
20.1 Introduction 437

20.2 Blockdiagram 437

20.3 OVEIVIBW ..t e e 438

20.4 Features 438

20.5 Modesofoperation. 439

20.5.1 Mastermode e 440

20.5.2 Slavemode 440

20.5.3 Moduledisablemode 440

20.5.4 Debugmode e 440

20.6 External signal description 440

20.6.1 Signal OvervieWt e 440

Kﬁ Doc ID 16912 Rev 5 11/936

Contents RMO0046
20.6.2 Signal names and descriptionsc. ... 441

20.7 Memory map and registers description 442
20.7.1 MemMOIrYy Mapottt e e 442

20.7.2 Registers description e 443

20.8 Functional description e 460
20.8.1 Modesofoperation 461

20.8.2 Startandstopof DSPItransfers 462

20.8.3 Serial Peripheral Interface (SPI) configuration 463

20.8.4 DSPI baud rate and clock delay generation 466

20.8.5 Transferformats 469

20.8.6 Continuous Serial communicationsclock 476

20.8.7 Interrupts/DMA Trequestsiiiiiii 478

20.8.8 Powersavingfeatures 479

20.9 Initialization and application information 480
20.9.1 Managing qQUEBUESttt e 480

20.9.2 Baudratesettings 480

20.9.3 Delaysettings i 482

20.9.4 Calculation of FIFO pointer addresses 482

21 LIN Controller (LINFIeX).o oo ittt i e i nnnns 485
21.1 Introduction 485
21.2 Mainfeatures 485
2121 LINmodefeatures i 485

2122 UARTmodefeatureso 485

21.2.3 FeaturescommontoLINand UART 486

21.3 General description 486
21.4 Fractional baud rate generation 487
21.5 Operatingmodest 489
21.5.1 Initializationmode 489

2152 Normalmode e 489

21.5.3 Lowpowermode (Sleep) 489

216 TestmoOdes e 490
21.6.1 LoopBackmode 490

21.6.2 SelfTestmode 490

21.7 Memory map and registers description 491
21.7.1 MemOry Mapottt e 491

12/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
21.8 Functional description e 518

21.8.1 UARTMOdE e 518

21.82 LINMOde 520

21.8.3 8-bittimeoutcounter 528

21.8.4 Interrupts 529

22 FIeXCAN it e e e ettt snnnnnnnnnnnnnns 531
22,1 Introduction 531

22,11 OVEIVIEW . oottt e e e 531

22.1.2 FlexCAN module features 532

22.1.3 Modesofoperation e 533

22.2 External signal description 534

2221 OVEIVIEW .. e e 534

22.2.2 Signal Descriptions e 534

22.3 Memory map and registers description 534

22.3.1 FlexCAN memory mappingueuiueuneennnne.. 534

22.3.2 Message bufferstructure 536

22.3.3 RxFIFOstructuret 540

22.3.4 Registers description 542

22.4 Functional description e 560

22,41 OVEIVIEW .ottt e e e 560

22,42 TransSmMit PrOCESSttt ittt e 560

22.4.3 Arbitration process e 561

2244 RECEIVE PrOCESS . . oottt ettt 561

2245 MatChing ProCeSSttt e 563

2246 Datacoherence 564

22,47 BXFIFO .. 566

22.4.8 CAN protocol relatedfeatures 567

22.4.9 Modes ofoperationdetails, 571

22410 Interrupts e 572

22411 Businterface 573

22.5 Initialization/application information 573

22.5.1 FlexCAN initialization sequence v .. 574

23 Analog-to-Digital Converter (ADC)..........cciiiiiiiiinnnnnn. 575
231 OVEIVIBW ..t e e e 575

ﬂ Doc ID 16912 Rev 5 13/936

Contents RMO0046
23.1.1 Device-specificfeatures 575

23.1.2 Device-specific pin configuration features 575

23.1.3 Device-specific implementation 576

23.2 Introduction 576
23.3 Functional description e 577
23.3.1 Analogchannelconversion 577

23.3.2 Analog clock generator and conversion timings 580

23.3.3 ADC sampling and conversiontiming 581

23.3.4 ADC CTU (Cross Triggering Unit) 583

23.3.5 Programmable analogwatchdog 584

23.3.6 DMAfunctionality 585

23.3.7 Interrupts e 585

23.3.8 Power-downmode 586

23.3.9 Auto-clock-offmode 586

23.4 Registerdescriptions e 586
23.4.1 Introduction 586

23.4.2 Controllogicregisters i 588

23.4.3 Interruptregisters 591

23.4.4 DMA registers 595

23.45 Thresholdregisters i 597

23.4.6 Conversion Timing Registers CTR[0] 599

23.4.7 Maskregisters e 599

23.4.8 Delayregisterso 601

23.4.9 Dataregisters 601

24 Cross TriggeringUnit (CTU)cciiiiiiiiii it iiiie e e 603
241 Introduction 603
242 CTUOVEIVIEW . . . oo e e e e e 603
24.3 Functional description e 604
2431 Triggereventsfeatures i 604

24.3.2 Trigger generator subunit (TGS) 605

24.3.3 TGSintriggeredmode 605

2434 TGSinsequentialmode i, 606

24.3.5 TGS COUNtEI ...ttt e e e e 607

244 Schedulersubunit (SU) 608
2441 ADCcommandslist 610

14/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents

2442 ADCcommandslistformat 610

2443 ADCresuUlts 612

245 Reloadmechanism.......... 613
246 Powersafetymode 614
24.6.1 MDISDbit 614

24.6.2 STOPMOEt 614

24.7 Interruptsand DMArequests i i 615
2471 DMA SUPPOIt ..o e 615

2472 CTUfaultsand errorst 615

24.7.3 CTU interrupt/DMA requests, 616

24.8 MeEMOIY MaP . oottt et e 617
24.8.1 Trigger Generator Sub-unit Input Selection Register (TGSISR) 621

24.8.2 Trigger Generator Sub-unit Control Register (TGSCR) 624

24.8.3 Trigger x Compare Register (TXCR, x=0...7) 624

24.8.4 TGS Counter Compare Register (TGSCCR) 625

24.8.5 TGS Counter Reload Register (TGSCRR) 625

24.8.6 Commands list control register 1 (CLCR1) 626

24.8.7 Commands list control register2 (CLCR2) 626

24.8.8 Trigger handler control register 1 (THCR1) 627

24.8.9 Trigger handler control register 2 (THCR2) 629
24.8.10 Commands list register x (x=1,....,24) (CLRX) 631

24.8.11 FIFO DMA control register (FDCR) 632
24.8.12 FIFO controlregister (FCR) i 633
24.8.13 FIFO threshold register (FTH) 634
24.8.14 FIFO statusregister (FST) 635
24.8.15 FIFO Right aligned data x (x=0,....,3) (FRX) 636
24.8.16 FIFO signed Left aligned data x (x=0,....3) (FLX) 637
24.8.17 Cross triggering unit error flag register (CTUEFR) 637
24.8.18 Cross triggering unit interrupt flag register (CTUIFR) 638
24.8.19 Cross triggering unit interrupt/DMA register (CTUIR) 639
24.8.20 Control ON time register (COTR) i 640

24.8.21 Cross triggering unit control register (CTUCR) 641
24.8.22 Cross triggering unit digital filter (CTUDF) 642
24.8.23 Cross triggering unit power control register (CTUPCR) 642

25 FleXPWMttt nnannnnnnnnnnns 643
251 OVeIVIBW . . e 643

K‘YI Doc ID 16912 Rev 5 15/936

Contents RMO0046
252 Fealures 643
25.3 Modesofoperation 644
25.4 Blockdiagrams 645

25.41 Modulelevel e 645
2542 PWMsubmodule 646
25.5 External signal descriptions i 647
25.5.1 PWMA[n] and PWMB[n] — external PWM pair 647
2552 PWMX[n] — auxiliary PWMsignal 647
25.5.3 FAULT[n]—faultinputs 647
25.5.4 EXT_SYNC — external synchronization signal 647
25.5.5 EXT_FORCE — external output force signal 647
25.5.6 OUT_TRIGO[n] and OUT_TRIG1[n] — output triggers 647
25.5.7 EXT_CLK —externalclocksignal 647
25.6 Memorymapandregisters 648
25.6.1 FlexPWM module memory mapc.uiiinninennnn.. 648
25.6.2 Registerdescriptions i 650
25.6.3 Submoduleregisters 651
25.6.4 Configurationregisters 665
25.6.5 Faultchannelregisters......... i 671
25.7 Functional description 675
25.7.1 Center-aligned PWMs i, 675
25.7.2 Edge-aligned PWMs 676
25.7.3 Phase-shifted PWMs 676
25.7.4 Double switching PWMs i 678
25.7.5 ADCHNQQeringot 679
25.7.6 Synchronous switching of multiple outputs 681
25.8 Functionaldetails 682
25.8.1 PWMclocking 683
25.8.2 Registerreload logic 683
25.8.3 Counter synchronization 684
25.8.4 PWMgeneration 685
25.8.5 Output compare capabilities 687
25.8.6 ForceoutlogiCot e 687
25.8.7 Independent or complementary channel operation 688
25.8.8 Deadtimeinsertionlogic 689
25.8.9 Top/bottom correction 691

16/936

Doc ID 16912 Rev 5 KYI

RMO0046 Contents
25.8.10 Manual correction 693

25.8.11 OutputlogiCot 694
25.8.12 Faultprotection 695
25.8.13 Faultpinfilter 696
25.8.14 Automaticfaultclearing 697
25.8.15 Manualfaultclearing i 697
25.8.16 Faulttesting i 698

25,9 PWMageneratorloading 698
2591 Loadenable 698

25.9.2 LoadfreqUenCyttt 699

25983 Reloadflago 700

25.9.4 Reload errors 700

25.9.5 Initialization 700

25.10 ClOCKS . .ottt 701
2511 Interrupts e 701
25.12 DMA 702
26 L= 111 = 703
26.1 Introduction 703
26.2 Features 704
26.3 Module block diagram 705
26.4 Channelblockdiagram i 706
26.5 External signal descriptions i L. 706
26.5.1 ETC[5:0]—eTimer input/outputs 706

26.6 Memorymapandregisters 706
26.6.1 OVEIVIBW ...ttt 706

26.6.2 Timerchannelregisters i 710

26.6.3 Watchdogtimerregisters i 725

26.6.4 Configurationregisters 726

26.7 Functional description e 729
26.7.1 General 729

26.7.2 Countingmodes ottt 729

26.7.3 Otherfeatures i 734

26.8 ClOCKS . . oot 735
26.9 Interrupts 736
Kﬁ Doc ID 16912 Rev 5 17/936

Contents RMO0046
26.10 DMA 736

27 Functional Safetyccoiiiiiiii et 737
271 Introduction 737

27.2 Register protectionmodule 737

27.2.1 OVEIVIBW . .t e 737

2722 Features e 738

27.2.3 Modesofoperation 738

27.2.4 External signal description i 738

27.2.5 Memory map and registers description, 738

27.2.6 Functional description 742

27.27 Reset ... 745

27.3 Software Watchdog Timer (SWT) 745

27.3.1 OVEIVIEW ..o e 745

27.3.2 Features 746

27.3.3 Modesofoperation 746

27.3.4 External signal description i 746

27.3.5 SWT memory map and registers description 746

27.3.6 Functional description 752

28 Fault CollectionUnit (FCU)t iiiiiiiiinnaanns 754
28.1 Introduction 754

28.1.1 OVEIVIEW ..o e e 754

28.1.2 Features e 757

28.1.3 Modesofoperation 757

28.2 Memory map and register definition oL 757

28.2.1 MemOry Mapttt e e 758

28.2.2 Registersummary 758

28.2.3 Registerdescriptions 760

28.3 Functional description 771

28.3.1 Statemachine 772

28.3.2 Output generation protocol 773

29 Wakeup Unit (WKPU)t it e e s naa e 776
291 OVEIVIBW ..t e e 776

29.2 Fealures 776

18/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
29.3 External signal description i 776

29.4 Memory map and registers description 776

29.41 MemOrYy Map e 776

29.4.2 Registers description 777

29.5 Functional description e 779

29.5.1 General 779

29.5.2 Non-Maskable Interrupts 779

30 Periodic Interrupt Timer (PIT)o oo e es 781
30.1 Introduction 781

30.1.1 OVEIVIEW ..ot e e e 781

30.1.2 Featureso e 781

30.2 Signal description 782

30.3 Memory map and registers description 782

30.3.1 Memory mapttt e 782

30.3.2 Registersdescription 783

30.4 Functional description 787

30.4.1 General e 787

30.4.2 Interrupts e 789

30.5 Initialization and application information 789

30.5.1 Example configuration 789

31 System Timer Module (STM). ... e ans 790
311 OVeIVIEW . oo e 790

31.2 Features 790

31.3 Modesofoperation 790

31.4 External signal description i 790

31.5 Memory map and registers description 790

31.5.1 Memorymap 790

31.5.2 Registers description 791

31.6 Functional description 795

32 Cyclic Redundancy Check (CRC)..........c.ciiiiiiiiinnnnn. 796
32.1 Introduction 796

32,11 GlOSSAIY . . oot 796

32.2 Mainfeatures e 796

ﬂ Doc ID 16912 Rev 5 19/936

Contents RMO0046
32.2.1 Standardfeatures 796

32.3 Blockdiagram 796

32.3.1 IPSbusinterface 797

32.4 Functional description i 797

32.5 Memory map and registers description 799

32.5.1 CRC Configuration Register (CRC_CFG) 800

32.5.2 CRCInputRegister (CRC_INP) i, 801

32.5.3 CRC Current Status Register (CRC_CSTAT) 802

32.5.4 CRC Output Register (CRC_OUTP) 802

32.6 Usecasesandlimitations............. 803

33 Boot Assist Module (BAM)coiiiiiiiii i 806
331 OVeIVIEW ..o 806

33.2 Features e 806

33.3 Bootmodes 806

334 MemMOry Map . ..ottt e e 806

33.5 Functional description e 807

33.5.1 Enteringbootmodes 807

33.5.2 SPC560P40/34 boot pinst 808

33.5.3 Reset Configuration Half Word (RCHW) 809

33.5.4 Singlechipbootmode 810

33.5.5 Bootthrough BAM 811

33.5.6 Boot from UART—autobaud disabled 817

33.5.7 Bootstrap with FlexCAN—autobaud disabled 818

33.6 FlexCAN boot mode download protocol 819

33.6.1 Autobaudfeature 819

33.6.2 Interrupt e 831

33.7 Censorshipt 831

34 Voltage Regulators and Power Supplies 836
34.1 Voltageregulator 836

34.1.1 High Power or Main Regulator (HPREG) 836

34.1.2 Low Voltage Detectors (LVD) and Power On Reset (POR) 836

34.1.3 VREGdigitalinterface i 837

34.1.4 Registers Description 838

34.2 Powersupply strategy e 839

20/936 Doc ID 16912 Rev 5 Ky_l

RMO0046 Contents
35 IEEE 1149.1 Test Access Port Controller (JTAGC) 841
35.1 Introduction 841

35.2 Blockdiagram 841

35.83 OVeIVIEW ..o e 841

35.4 Features 842

35.5 Modesofoperation........ 842

35.5.1 Reset 842

35.5.2 IEEE 1149.1-2001 definedtestmodes 842

35.6 External signal description 843

35.7 Memory map and registers description 843

35.7.1 Instructionregister 844

35.7.2 Bypassregister 844

35.7.3 Device identification register i . 844

35.7.4 Boundaryscanregister 845

35.8 Functional description 845

35.8.1 JTAGC reset configuration i, 845

35.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port (TAP) 845

35.8.3 TAP controller state machine 846

35.8.4 JTAGC instructions i 848

35.8.5 Boundaryscan e 850

35.9 e200z0 OnCE controller i e 850

35.9.1 e200z0 OnCE controller block diagram 850

35.9.2 e200z0 OnCE controller functional description 851

35.9.3 e200z0 OnCE controller registers description 851

35.10 Initialization/Application Information 853

36 Nexus DevelopmentInterface (NDI) ...t 854
36.1 Introduction 854

36.2 Information specific to thisdevice 854

36.2.1 Featuresnotsupported 854

36.3 Blockdiagram 855

36.4 Features 855

36.5 Modesofoperation........... 856

36.5.1 Nexusreset i 856

36.5.2 NDIMOdES 856

ﬂ Doc ID 16912 Rev 5 21/936

Contents RMO0046
36.6 External signal description 856
36.7 Memory map and registers description 857
36.8 Interrupts and Exceptions 857
36.9 Debug supportoverview 858

36.9.1 Software Debug Facilities i 858
36.9.2 Additional Debug Facilities 858
36.9.3 Hardware Debug Facilities 859
36.9.4 Sharing Debug Resources by Software/Hardware 859
36.10 Software Debug Events and Exceptions 861
36.10.1 Instruction Address Compare Event 862
36.10.2 Data Address CompareEvent 863
36.10.3 Linked Instruction Address and Data Address Compare Event 865
36.10.4 Trap Debug Event 866
36.10.5 Branch TakenDebugEvent 866
36.10.6 Instruction Complete Debug Event 866
36.10.7 Interrupt Taken Debug Event 866
36.10.8 Critical Interrupt Taken Debug Event 867
36.10.9 ReturnDebug Event 867
36.10.10 Critical Return Debug Event 867
36.10.11 External Debug Event 867
36.10.12 Unconditional Debug Event 868
36.11 Debug Registers e 868
36.11.1 Debug Address and Value Registers 868
36.11.2 Debug Control and Status Registers 869
36.11.3 Debug External Resource Control Register (DBERCO) 882
36.12 External Debug Support 888
36.12.1 OnCE Introduction 888
36.12.2 JTAG/ONCE PINS . .. i e 891
36.12.3 OnCE Internal Interface Signals 891
36.12.4 OnCE Interface Signals i 892
36.12.5 e200z0h OnCE Controller and Serial Interface 893
36.12.6 AccesstoDebug Resources, 901
36.12.7 Methods of EnteringDebugMode 903
36.12.8 CPU Status and Control Scan Chain Register (CPUSCR) 904
36.13 Watchpoint Support 910
36.14 Basic Steps for Enabling, Using, and Exiting External Debug Mode ... 911

22/936

Doc ID 16912 Rev 5 KYI

RMO0046 Contents

36.15 Functional description e 912

36.15.1 Enabling Nexus clients for TAP access 912

36.15.2 Debugmodecontrol 913

Appendix A Registers Under Protectionciiuns. 914
Document revision history. i ittt it i e 925

KYI Doc ID 16912 Rev 5 23/936

List of tables RMO0046

List of tables

Table 1. SPC560P40/34 device COmpPariSONttt e e 48
Table 2. SPC560P40 device configuration differences oL 50
Table 3. MmOy Map. . . oo e 69
Table 4. SUPPIY PINS . . oot e 76
Table 5. Sy S EM PINS . . e 77
Table 6. PN MUXING . ..o 78
Table 7. CTU /ADC/ FlexPWM /eTimerconnections., 88
Table 8. RC_CTL field descriptions o e 98
Table 9. Crystal oscillator truth table 99
Table 10. OSC_CTL MeMOIY MaP . « o ottt e et e e e e e e e e e e e e 929
Table 11. OSC_CTL field descCriptionso e e 100
Table 12. FMPLL MEMOIY MaP . . . oottt it e e e et e e e e e e et e i e 102
Table 13. CRfield desCriptions. e e 103
Table 14. MR field descriptions e 104
Table 15. Progressive clock switching on pll_selectrisingedge 106
Table 16. CMU module SUMMArYot e e e e 109
Table 17. CMU MeMOIY MaP . . . ottt et e e e e e e e e e e e 111
Table 18. CMU_0_CSR field descriptionst e 112
Table 19. CMU_O_FDR field descriptions e 113
Table 20. CMU_O0_HFREFR_A field descriptions. i 113
Table 21. CMU_O_LFREFR_A fields descriptions i i 114
Table 22. CMU_O_ISR field descriptions i 114
Table 23. CMU_O_MDR field descriptions e e 115
Table 24. MC_CGM Register Description e 118
Table 25. MC_CGM Memory Map oo e e e et e e e e 119
Table 26. Output Clock Enable Register (CGM_OC_EN) Field Descriptions. 124
Table 27. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions 125
Table 28. System Clock Select Status Register (CGM_SC_SS) Field Descriptions 126
Table 29. System Clock Divider Configuration Register (CGM_SC_DCO0) Field Descriptions 126
Table 30. Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC) Field Descriptions 127
Table 31. Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0) Field Descriptions. . 128
Table 32. Auxiliary Clock 1 Select Control Register (CGM_AC1_SC) Field Descriptions 129
Table 33. Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0) Field Descriptions. . 129
Table 34. Auxiliary Clock 2 Select Control Register (CGM_AC2_SC) Field Descriptions 130
Table 35. Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0) Field Descriptions. . 131
Table 36. MC_ME Mode DescCriptionsot e e e e e 138
Table 37. MC_ME Register Descriptiont e 139
Table 38. MC_ME Memory Map.o oot e e e e e e e 142
Table 39. Global Status Register (ME_GS) Field Descriptions 147
Table 40. Mode Control Register (ME_MCTL) Field Descriptions 150
Table 41. Mode Enable Register (ME_ME) Field Descriptions. 151
Table 42. Interrupt Status Register (ME_IS) Field Descriptions. 152
Table 43. Interrupt Mask Register (ME_IM) Field Descriptions 153
Table 44. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions 154
Table 45. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions 156
Table 46. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions. 162
Table 47. Peripheral Status Registers 0...4 (ME_PS0...4) Field Descriptions. 165
Table 48. Run Peripheral Configuration Registers (ME_RUN_PCO...7) Field Descriptions. 166
24/936 Doc ID 16912 Rev 5 Ky_l

RMO0046

List of tables

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.

574

Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions. . . 167

Peripheral Control Registers (ME_PCTLO...143) Field Descriptions 168
MC_ME Resource Control OVerviewttt e 173
MC_ME System Clock Selection Overview, 177
MC_PCU Register Descriptionot e 185
MC_PCU MemoOry Map.ottt e e e e e e e 185
Power Domain Status Register (PCU_PSTAT) Field Descriptions. 186
MC_RGM Register Description 190
MC_RGM MeMOry Mapottt e e e 191
Functional Event Status Register (RGM_FES) Field Descriptions. 193
Destructive Event Status Register (RGM_DES) Field Descriptions 194
Functional Event Reset Disable Register (RGM_FERD) Field Descriptions 196
Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions 197
Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions 198
Functional Event Short Sequence Register (RGM_FESS) Field Descriptions. 199
Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions. 201
MC_RGM Reset Implicationst e e 202
MC_RGM Alternate Event Selection i, 206
Interrupt sources available 209
INTC MEMOIY MaAP . . o . vttt e et e et e e e e e e e e 212
INTC_MCR field descriptions e e e 213
INTC_CPR field desCriptionsot e e e 214
INTC_IACKR field descriptions.ot e e e e 215
INTC_SSCIR[0:7] field desCriptionso v e e 217
INTC_PSRO_3-INTC_PSR220—-221 field descriptions. 218
INTC Priority Select Register address offsets. 218
Interrupt vectortable. e 220
Order of ISR execution example. 235
SSCM MEMOIY MAP .« o ettt et et et et e e et e e e 241
STATUS allowed register aCCesSSES v v i ittt e e e e 242
STATUS field descriptionsot e 242
MEMCONEFIG field descriptions e e 243
MEMCONFIG allowed register acCesses u ittt 243
ERROR field descriptionst 244
ERROR allowed register aCCesses.ttt e 244
DEBUGPORT field descriptionso e 245
Debug Status Port modes. 245
DEBUGPORT allowed register acCesses. v it 246
PWCMPHI/L field descriptions.t 246
PWCMPH/L allowed register aCCESSES v v vttt e e e i e 247
SIUL signal propertiesot e 250
SIUL MEMOIY MaP . . o ittt ettt e e et e e e e e e 251
MIDR1 field descriptions.o e 253
MIDR2 field descriptions.o e 254
ISR field descriptions 255
IRER field descriptions 255
IREER field descriptions e 256
IFEER field descriptions e 256
IFER field descriptions e 257
PCRI0:71] field desCriptionsottt e e 258
PCR[Nn] reset value exceplionsottt e 259
PCR bit implementation by padtype 259

Doc ID 16912 Rev 5 25/936

List of tables RMO0046

Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.

26/936

PSMI[0_3:32_35] field descriptions e e 260
Pad selection e 260
GPDO[0_3:68_71]field descriptionsttt e 262
GPDI[0_3:68_71]field descriptionst e e 263
PGPDOO0_3 field desCriptions oo i e e 263
PGPDI[0:3] field descriptions oo e e 264
MPGPDOI0:6] field descriptions i e 265
IFMC[0:24] field descriptions i e e 265
IFCPR field desCriptionso i e e 266
Device XBAR switch ports e 281
Hardwired bus master priorities 284
ECSM registers. i 287
PCT field desCriplions. oo e e e 288
REV field descriptions. e e 289
PLAMC field desCriptions oot e 289
ASC field desCriptions.ot iie 290
IMC field desCriptionso e e 290
MRSR field descriptions e 291
MIR field descriptions e 291
MUDCR field desCriptions. e e e 292
ECR field desCriptions e e 294
ESR field descriptions. e e 295
EEGR field descriptions e 297
FEAR field descriptions e e 299
FEMR field descriptions i e e 299
FEAT field descriptions.o e e 300
FEDR field descriptions e 301
REAR field descriptions e 302
RESR field descriptionst e 302
RAM syndrome mapping for single-bit correctable errors. 302
REMR field descriptions e 304
REAT field descriptions e 305
REDR field descriptions e 306
SRAM operating modest 308
SRAM MEMONY MAP .« ottt et et et et e e e e e e 308
Number of wait states required for SRAM operations. 309
Flash-related regions in the systemmemorymap oo ... 314
Platform Flash controller 32-bit memory map. i 315
Platform Flash controller stall-while-write interrupts 322
Additional wait state encoding e 323
Extended additional wait state encoding 323
288 KB code Flash module sectorization i, 333
64 KB data Flash module sectorization i, 333
TestFlash structure e 334
Shadow sector Structure e 336
Flash registers e 339
Flash 256 KB bankO registermap e 339
Flash 64 KB bank1 registermap e 341
MCR field descriptions e 342
MCR bits set/clear priority levels 346
LML and NVLML field descriptions. e e 347
SLL and NVSLL field descriptionst e 350

Doc ID 16912 Rev 5 Ky_’

RMO0046 List of tables
Table 153. LMS field descriptions. e e 352
Table 154. ADR field desCriptions e e e 352
Table 155. ADR content: priority list. 353
Table 156. PFCRO field desCriptions it e e e 354
Table 157. PFCRI1 field desCriptions it e e e e 357
Table 158. PFAPR field descriptions e 359
Table 159. UTO field descriplions oo e e e e 361
Table 160. UT1 field descriplions oo e e e 363
Table 161. UT2 field descriplions o e e e e 363
Table 162. UMSIRO field descriptions i e e e 364
Table 163. UMISR1 field descriptions i e e 364
Table 164. UMISR2 field descriptions i e e e 365
Table 165. UMISR3 field descriptions i e e e 366
Table 166. UMISRA4 field descriptions i e e e 367
Table 167. NVPWDO field descriptions. e e e 367
Table 168. NVPWD1 field descriptions. e e 368
Table 169. NVSCIO field descriptions. i e e e e 368
Table 170. NVSCIH field descriptions. i e e e e 369
Table 171. NVUSRO field descriptions. e e e 370
Table 172. Flash modify operations e 371
Table 173. Bits manipulation: double words with the same ECCvalue 379
Table 174. Bits manipulation: censorship management. 381
Table 175. eDMA MemMOry Map oot e e e e e e e 384
Table 176. EDMA_CR field descriptions i e e e 387
Table 177. EDMA_ESR field descriptions i e 388
Table 178. EDMA_ERQRL field descriptions v e e e 390
Table 179. EDMA_EEIRL field descriptions o e 391
Table 180. EDMA_SERQR field descriptions.ot e 391
Table 181. EDMA_CERQR field descriptions. e 392
Table 182. EDMA_SEEIR field descriptions. it e 393
Table 183. EDMA_CEEIR field descriptions. i e 393
Table 184. EDMA_CIRQR field descriptions e 394
Table 185. EDMA_CERR field descriptions e 394
Table 186. EDMA_SSBR field descriptions e 395
Table 187. EDMA_CDSBR field descriptions. it e 396
Table 188. EDMA_IRQRL field descriptions. it e 396
Table 189. EDMA_ERL field descriptions.t 397
Table 190. EDMA_HRSL field descriptions e e 398
Table 191. EDMA_CPRnfield descriptions i e 399
Table 192. TCDn 32-bit memory Structure i 399
Table 193. TCDnfield descriptions. e e 401
Table 194. eDMA peak transfer rates (MB/SeC).ot e e 411
Table 195. eDMA peak request Rate (MReQ/seC) 412
Table 196. TCD primary control and status fields. 414
Table 197. DMA request summary for eDMA. 416
Table 198. Modulo feature example e 420
Table 199. Channel linking parameters i e 423
Table 200. DMA_MUX MEMOIY MAP .« . o . vttt et e e e e e e e e e et et e e 425
Table 201. CHCONFIG#x field descriptions e 427
Table 202. Channel and triggerenabling i e i 427
Table 203. DMA channel mappingot e e 428
Table 204. Signal ProPerties. . . oottt e 441
ﬂ Doc ID 16912 Rev 5 27/936

List of tables RMO0046

Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.
Table 211.
Table 212.
Table 213.
Table 214.
Table 215.
Table 216.
Table 217.
Table 218.
Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.
Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.
Table 241.
Table 242.
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
Table 250.
Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.

28/936

DSPIMEMOIY MaP . . o . ettt e e e e e e e e e e e e e 442
DSPIx_MCR field descriptionsot e 444
DSPIx_TCR field descriptionst e e e 447
DSPIx_CTARN field descriptionst e 448
DSPISCK AUty CYClE . . .ot 451
DSPItransfer frame size i 451
DSPIPCSto SCKdelay scaler e 452
DSPI after SCK delay scaler e 452
DSPI delay after transferscaler 452
DSPIbaud rate scaler e 453
DSPIx_SR field descriptions.t e e 453
DSPIx_RSER field descriptions e 455
DSPIx_PUSHR field descriptionsot e e 457
DSPIx_POPR field descriptionsottt e 459
DSPIx_TXFRn field descriptions i i e 460
DSPIx_RXFRn field description e 460
State transitions for start and stop of DSPItransfers 463
Baud rate computation example. 467
CS to SCK delay computationexample 467
After SCK delay computation example. e 467
Delay after transfer computationexample i i 468
Peripheral Chip Select strobe assert computationexample. 469
Peripheral Chip Select strobe negate computationexample 469
Delayed master sample point. 472
Interrupt and DMA request conditions 478
Baud rate values. e 481
Delay values e 482
Error calculation for programmed baud rates L 488
LINFIEX MemMOry Map oot e e e e e 491
LINCRA1 field descriptionsot e 493
Checksum bits configuration. 494
LIN master break length selection i 494
Operating mode selection. 495
LINIER field descriptions e 496
LINSR field descriptionso oot e 498
LINESR field descriptionsot e 500
UARTCR field descriptions o 502
UARTSR field descriptionsot 503
LINTCSR field descriptions. i e 505
LINOCR field descCriptions i e 506
LINTOCR field descriptionso e 507
LINFBRR field descriptions. e 507
LINIBRR field descriptions e 508
Integer baud rate selection. e 508
LINCFR field descriptionsot e 509
LINCR2 field descriptionso e 510
BIDR field desCriptionst e 511
BDRL field descriptions i e 512
BDRM field descriptionso 513
IFER field descriptionso e 513
IFMI field descriptions.o e e 514
IFMR field descriptionso e 515

Doc ID 16912 Rev 5 Ky_l

RMO0046 List of tables
Table 257. IFMRI[IFM] configuration e e 515
Table 258. IFCR2nfield desCriptions ottt e e 516
Table 259. IFCR2n + 1 field descriptions i e e 517
Table 260. Message buffer. 519
Table 261. Filter to interrupt vector correlation. 525
Table 262. LINFlex interruptcontrol e 529
Table 263. FIEXCAN SIgNalso o 534
Table 264. FlexCAN module MemoOry Map.o vttt e e e e e 535
Table 265. FlexCAN registerresetstatus. i i 535
Table 266. Message Buffer MBO memory mapping oo v vt ei i i 536
Table 267. Message Buffer structure field description L 537
Table 268. Message buffer code for Rxbuffers i 538
Table 269. Message Buffer code for Txbuffers 539
Table 270. MBO-MB31 @ddressesttt e e 539
Table 271. ID Table O -7 e 541
Table 272. Rx FIFO Structure field description. 542
Table 273. MCR field descriptions e e e 543
Table 274. IDAM COINGottt e e e e e e 546
Table 275. CTRL field desCriptions.ot e e e e e 547
Table 276. TIMER field descriptions. i e 550
Table 277. RXGMASK field descriptiont e e e 551
Table 278. RX14MASK field description. e e 551
Table 279. RX15MASK field description. e 552
Table 280. Error and Status Register (ESR) field description. 554
Table 281. Faultconfinementstate 556
Table 282. IMASKT1 field desCriptions.ottt e e e 557
Table 283. IFLAGHT field descriptions i e 557
Table 284. RXIMRO-RXIMR31 field descriptions. 559
Table 285. RXIMRO-RXIMR31 addressesottt e e e 559
Table 286. Time segment SyNtaxt e 570
Table 287. CAN standard compliant bit time segment settings 570
Table 288. Minimum ratio between peripheral clock frequency and CAN bitrate 571
Table 289. Configurations for starting normal conversion 577
Table 290. ADC sampling and conversion timingat5V /3.3VforADCO..................... 582
Table 291. Max/Min ADC_clk frequency and related configuration settings at 5 V / 3.3 V for ADCO. 583
Table 292. Values of WDGxH and WDGXxL fields. e 584
Table 293. Example for Analog watchdog operation 585
Table 294. ADC digital registers.ot e 587
Table 295. MCR field descriptions 589
Table 296. MSR field descriptions e 590
Table 297. ISR field descriptions i e 592
Table 298. [IMR field desCriptions e 592
Table 299. WTISR field descriptions e e 593
Table 300. WTIMR field descriptions e e 594
Table 301. DMAE field descriptions e 595
Table 302. DMARX field descriptions e 596
Table 303. TRCxfield descriptions. i e e 597
Table 304. THRHLRxfield descriptions e 598
Table 305. CTR field descriptions. i e 599
Table 306. NCMR field descriptionsot e e i e 600
Table 307. JCMR field descriptions it e e 600
Table 308. PDEDR field descriptions e 601
Kﬁ Doc ID 16912 Rev 5 29/936

List of tables RMO0046

Table 309.
Table 310.
Table 311.
Table 312.
Table 313.
Table 314.
Table 315.
Table 316.
Table 317.
Table 318.
Table 319.
Table 320.
Table 321.
Table 322.
Table 323.
Table 324.
Table 325.
Table 326.
Table 327.
Table 328.
Table 329.
Table 330.
Table 331.
Table 332.
Table 333.
Table 334.
Table 335.
Table 336.
Table 337.
Table 338.
Table 339.
Table 340.
Table 341.
Table 342.
Table 343.
Table 344.
Table 345.
Table 346.
Table 347.
Table 348.
Table 349.
Table 350.
Table 351.
Table 352.
Table 353.
Table 354.
Table 355.
Table 356.
Table 357.
Table 358.
Table 359.
Table 360.

30/936

CDR field desCriptionso e e 602
ADC commands translation 611
CTU N EITUPES . . oo e e e e 616
CTUMEMOIY MaAP . .t ittt e e et e e e e e e e e e e 617
TGS regiStOrS . . .ttt 620
SU regiSterS . o ot e 620
CTU registers . .o 620
FIFO registers.o 621
TGSISR field descriptions. i e 622
TGSCR field desCriptionsot e e 624
TXCR field descriptions. e 625
TGSCCRfield format e 625
TGSCRR field descriptions. e 625
CLCR1 field descCriptions i e e e e 626
CLCR2 field desCriptionst e e e 626
THCRA1 field descriptions e 627
THCR2 field descriptions i e e e e 629
CLRx (CMS =0) field desCriptionsot e 631
CLRx (CMS = 1) field desCriptions oot e e 632
FDCR field descriptionsot t e e 632
FCR field descriptions. e e e 633
FTH field descriptions e e 634
FST field descriptionst e e 635
FRxfield descriptions o e e 637
FLx field descriptions o i e e 637
CTUEFR field descriptions oo e e e e 638
CTUIFR field descriptions. i e e 639
CTUIR field descriptionst e 640
COTR field descriptions it e e 641
CTUCR field desCriptionso oottt 641
CTUDF field descriptions i e e 642
CTUPCR field descCriptionsot e e 642
Modes when PWM operation is restricted 644
FIeXPWM Memory Mapottt e e e e 648
CTRL2 field desCriptions. i e 652
CTRL1 field descCriptions. e 654
PWMreload freqQUENCYot 655
PWM prescaler. e e 656
OCTRL field descCriptionst e 659
STS field desCriptionso ot e 661
INTEN field descriptions e 662
DMAEN field descriptionso 662
TCTRL field descriptionso e e 663
DISMAP field descriptions e 664
OUTEN field descriptions oot 666
MASK field descriptions 666
SWCOUT field descriptions e e 667
DTSRCSEL field descriptions.o e 669
MCTRL field descriptionso e 671
FCTRL field descriptions e 672
FSTS field descriptions. o 673
FFILT field descriptions e e e 673

Doc ID 16912 Rev 5 Ky_l

RMO0046 List of tables
Table 361. Fault mapping.o e 696
Table 362. Interrupt SUMMArY.ot e e e e e 701
Table 363. DMA SUMMANYot e e e e e e e 702
Table 364. €TiMer MEeMmMOIY MaP. oottt et e et e e e e e e et e e 707
Table 365. COMP1 field desCriptionsottt e e e e 711
Table 366. COMP2 field desCriptions oot ti e eeeeeeeeiea 711
Table 367. CAPT1 field descriptions e e e 712
Table 368. CAPT2 field descriptions e e 712
Table 369. LOAD field descriptions e e e e 713
Table 370. HOLD field desCriptionsttt e et 713
Table 371. CNTR field descriptions i e e e e 714
Table 372. CTRLI1 field descriptions. oo e e e 714
Table 373. Count SOUICE ValUESot 715
Table 374. CTRL2 field desCriptions. oo e e e 716
Table 375. CTRL3 field desCriptions. oo e e e e 719
Table 376. STSfield desCriptionso e e e 720
Table 377. INTDMA field descCriptionst e e 721
Table 378. CMPLD1 field desCriptionsottt e e e 722
Table 379. CMPLD2 field desCriptions i e e 723
Table 380. CCCTRL field descriptions i e e e 723
Table 381. FILT field descriptions. oo e e 725
Table 382. WDTOL, WDTOH field descriptions i e 726
Table 383. ENBL field desCriptions. oo e e e e 727
Table 384. DREQnfield descriptions ottt e e 728
Table 385. Interrupt SUMMArY.ot e e e e 736
Table 386. DMA SUMMANYot e e e e e e et e e 736
Table 387. Register protection memory map i e 739
Table 388. SLBRnfield descriptions. it e 740
Table 389. Soft Lock Bits vs. Protected Addresst 741
Table 390. GCR field descriptions e e 741
Table 391, SWT MeMOIY Mapottt it et et e e e e i e 747
Table 392. SWT_CR field descriptions. e 747
Table 393. SWT_IR field descriptionst i 749
Table 394. SWT_TO field descriptions.ot e i 750
Table 395. SWT_WN field descriptions e 750
Table 396. SWT_SR field descriptionst e 751
Table 397. SWT_CO field descriptions.t e ae 752
Table 398. SWT_SR field descriptions.t e i 752
Table 399. FCU MEMOIY MAP . . .ottt ittt it et et e et e e i i i e 758
Table 400. Register SUMMArY.ot e e e e e e 758
Table 401. FCU_MCR field description i e 761
Table 402. FCU_FFR field descriptionsttt 762
Table 403. Hardware/software fault description 762
Table 404. FCU_FFFR field descriptionsot 764
Table 405. FCU_FFGR field description. e 764
Table 406. FCU_FER field descriptions i e 765
Table 407. FCU_TR field descriptions i e 766
Table 408. FCU_TERfield descriptions o e 767
Table 409. FCU_MSR field descriptions. i 768
Table 410. FCU_MCSR field descriptiont i 769
Table 411. FCU_FMCSR field description e 770
Table 412. Dual-rail coding.ot e 773
ﬂ Doc ID 16912 Rev 5 31/936

List of tables RMO0046

Table 413.
Table 414.
Table 415.
Table 416.
Table 417.
Table 418.
Table 419.
Table 420.
Table 421.
Table 422.
Table 423.
Table 424.
Table 425.
Table 426.
Table 427.
Table 428.
Table 429.
Table 430.
Table 431.
Table 432.
Table 433.
Table 434.
Table 435.
Table 436.
Table 437.
Table 438.
Table 439.
Table 440.
Table 441.
Table 442.
Table 443.
Table 444.
Table 445.
Table 446.
Table 447.
Table 448.
Table 449.
Table 450.
Table 451.
Table 452.
Table 453.
Table 454.
Table 455.
Table 456.
Table 457.
Table 458.
Table 459.
Table 460.
Table 461.
Table 462.
Table 463.
Table 464.

32/936

Bi-stable coding e e 775
WHKPU MeMOIY MaP . . . o oottt e et e e e e e e e e e e 776
NSR field descriptions i e e 777
NCR field descriptions e e 778
PIT MemMOry Map . ..o 782
PITMCR field descriptionsot e e e 783
LDVALNfield desCriptions.ot v i e 784
CVALNfield descriptions. ot e e e e 785
TCTRLnfield descriptions it e e e e 786
TFLGnfield desCriptions.ot 787
STM MEMOIY MEP . . o ottt ettt et e e e e e e e e e 790
STM_CRfield desCriptionst e e 792
STM_CNT field descriptionsot e e 792
STM_CCRnfield descriptions. e e e 793
STM_CIRnfield descriptionsttt e e e 794
STM_CMPnfield descriptions i e e 794
CRC MEMOIY MaAPD . . oottt ettt e e e e e e e e e 799
CRC_CFG field descriplions.ot e e e 800
CRC_INP field desCriptionsot e e e e 801
CRC_CSTAT field desCriptions v it e e e e 802
CRC_OUTP field descriptionst e e e e 803
BAM memory organization e 806
Hardware configuration to selectbootmode 808
SPC560P40/34 bOOt PINS . . . ot it 808
RCHW field descriptions.t e e 809
Flash boot sector e 810
Fields of SSCM STATUS registerused by BAM 813
Serial boot mode without autobaud—baudrates L o L. 813
UART boot mode download protocol (autobaud disabled) 818
FlexCAN boot mode download protocol (autobaud disabled) 819
System clock frequency related to external clock frequency 820
Maximum and minimum recommended baudrates oL 824
Prescaler/dividerand time basevalues i 828
FlexCAN standard compliant bit timing segment settings. 829
Lookup table for FlexCAN bit timingso e 829
PRESDIV 4+ 1 = 1 L 829
PRESDIV+1>1(YY=PRESDIV) e e 830
Examples of legal and illegal passwords i 832
Censorship configuration and truthtable 833
VREG_CTL field descriptionsot 838
VREG_STATUS field descriptionsot e 839
JTAG signal propertieso ot e 843
Device identification register field descriptions. oL 845
JTAG INStrUCHONSo e 848
€200z0 ONnCE register addressing.o ottt i e 852
DAC events and Resultant Updates. i 864
DBCRO Bit Definitions. e 870
DBCR1 Bit Definitions. e 873
DBCR2 Bit Definitions. e e 875
DBCR4 Bit Definitions. e e 879
DBSR Bit Definitions. e e 881
DBERCO Bit Definitions o e e 884

Doc ID 16912 Rev 5 Ky_l

RMO0046

List of tables

Table 465.
Table 466.
Table 467.
Table 468.
Table 469.
Table 470.
Table 471.
Table 472.
Table 473.
Table 474.
Table 475.
Table 476.

DBERCO Resource Control e 886
JTAG/ONCE Primary Interface Signals. e 891
OnCE Status Register Bit Definitions 895
OnCE Command Register Bit Definitions. i 896
€200z0h OnCE Register Addressingo i it e 897
OnCE Control Register Bit Definitions i 899
OnCE Register Access Requirements i 902
Watchpoint Output Signal Assignments i 910
JTAGC Instruction opcodes to enable Nexus clients 913
Nexus client JTAG INStructions. it e 913
Registers under protection 914
Revision history e 925

Doc ID 16912 Rev 5 33/936

List of figures RMO0046

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

34/936

Electric power steering application 47
Airbag application e 48
Block diagram (SPC560P40 full-featured configuration) 51
100-pin LQFP pinout — Full featured configuration (fop view) 72
100-pin LQFP pinout — Airbag configuration (top view) 73
64-pin LQFP pinout — Full featured configuration (top view) 74
64-pin LQFP pinout — Airbag configuration (fopview) 75
CTU /ADC / FlexPWM /eTimerconnections., 88
SPC560P40/34 system clock generation 92
SPC560P40/34 system clock distribution Part A 93
SPC560P40/34 system clock distribution PartB 94
RC Control register (RC_CTL)ot ieeeea 98
Crystal Oscillator Control register (OSC_CTL). e 100
FMPLL block diagram. e 101
Control Register (CR) oo e 102
Modulation Register (MR). e 104
Progressive clock switching scheme 106
Frequency modulation depth spreads i 108
SPC560P40/B4CMU. e 109
Control Status Register (CMU_O_CSR) e 112
Frequency Display Register (CMU_O_FDR). 113
High Frequency Reference register FMPLL_O0 (CMU_O_HFREFR_A). 113
Low Frequency Reference Register FMPLL_O (CMU_O_LFREFR_A)............... 114
Interrupt Status Register (CMU_O_ISR) i e 114
Measurement Duration Register (CMU_O_MDR). 115
MC_CGM Block Diagramo e e 117
Output Clock Enable Register (CGM_OC_EN) i, 124
Output Clock Division Select Register (CGM_OCDS_SC). 124
System Clock Select Status Register (CGM_SC_SS) 125
System Clock Divider Configuration Register (CGM_SC_DCO0).................... 126
Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC) 127
Auxiliary Clock 0 Divider Configuration Register (CGM_AC0_DCO) 128
Auxiliary Clock 1 Select Control Register (CGM_AC1_SC) 128
Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO) 129
Auxiliary Clock 2 Select Control Register (CGM_AC2_SC) 130
Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO) 131
MC_CGM System Clock Generation Overviewccciiiiiiiiinnen... 132
MC_CGM Auxiliary Clock 0 Generation Overviewttt 133
MC_CGM Auxiliary Clock 1 Generation Overviewt 133
MC_CGM Auxiliary Clock 2 Generation Overviewt 134
MC_CGM Output Clock Multiplexer and PAD[22] Generation 135
MC_ME Block Diagramttt e e e 137
Global Status Register (ME_GS) i e e 147
Mode Control Register (ME_MCTL)ot e e 149
Mode Enable Register (ME_ME) e 150
Interrupt Status Register (ME_IS). 152
Interrupt Mask Register (ME_IM) e 153
Invalid Mode Transition Status Register (ME_IMTS) 154

Doc ID 16912 Rev 5 KYI

RMO0046

List of figures

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.

574

Debug Mode Transition Status Register ME_DMTS), 155
RESET Mode Configuration Register ME_RESET_MC). 158
TEST Mode Configuration Register (ME_TEST_MC) 158
SAFE Mode Configuration Register ME_SAFE_MC) 159
DRUN Mode Configuration Register (ME_DRUN_MC) 160
RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC) 161
HALTO Mode Configuration Register (ME_HALTO_MC) 161
STOPO Mode Configuration Register (ME_STOPO_MC). o... 162
Peripheral Status Register O (ME_PSO) i e 164
Peripheral Status Register 1 (ME_PS1) i e 164
Peripheral Status Register2 (ME_PS2) i i i 165
Run Peripheral Configuration Registers (ME_RUN_PCO0...7) 166
Low-Power Peripheral Configuration Registers (ME_LP_PCO0...7) 167
Peripheral Control Registers (ME_PCTLO...143)ot e 167
MC_ME Mode Diagram 169
MC_ME Transition Diagramt e 179
MC_ME Application Example Flow Diagram 183
MC_PCU Block Diagram e 184
Power Domain Status Register (PCU_PSTAT) i 186
MC_RGM Block Diagram ot 188
Functional Event Status Register (RGM_FES). 192
Destructive Event Status Register (RGM_DES). oL, 194
Functional Event Reset Disable Register (RGM_FERD) 195
Destructive Event Reset Disable Register (RGM_DERD) 197
Functional Event Alternate Request Register (RGM_FEAR) 198
Functional Event Short Sequence Register (RGM_FESS). 199
Functional Bidirectional Reset Enable Register (RGM_FBRE) 200
MC_RGM State Machine e e 203
INTC block diagram 210
INTC Module Configuration Register INTC_MCR) i, 213
INTC Current Priority Register (INTC_CPR). e 213
INTC Interrupt Acknowledge Register (INTC_IACKR) 215
INTC End-of-Interrupt Register (INTC_EOIR) 216
INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIR[0:3]).ot 216
INTC Software Set/Clear Interrupt Register 4—-7 (INTC_SSCIR[4:7]).o i ot s 217
INTC Priority Select Register 0-3 (INTC_PSR[0:3]). oot 218
INTC Priority Select Register 220—221 (INTC_PSR[220:221]). oo i i v et 218
Software vector mode handshaking timing diagram. 231
Hardware vector mode handshaking timing diagram 232
SSCM block diagram 240
Keytoregisterfields. e 241
Status (STATUS) register.o i e e 242
System memory configuration (MEMCONFIG) register 243
Error Configuration (ERROR) registert 244
Debug Status Port (DEBUGPORT) register.co i 245
Password Comparison Register High Word (PWCMPH) register. 246
Password Comparison Register Low Word (PWCMPL) register 246
System Integration Unit Lite block diagram 249
Keytoregisterfields. e 252
MCU ID Register #1 (MIDR1) e 252
MCU ID Register #2 (MIDR2) ot 254
Interrupt Status Flag Register (ISR) o 255

Doc ID 16912 Rev 5 35/936

List of figures RMO0046

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.

36/936

Interrupt Request Enable Register (IRER) i i 255
Interrupt Rising-Edge Event Enable Register (IREER). 256
Interrupt Falling-Edge Event Enable Register (IFEER). 256
Interrupt Filter Enable Register (IFER) i e 257
Pad Configuration Registers 0-71 (PCR[0:71])ot 257
Pad Selection for Multiplexed Inputs registers (PSMI[0_3:32_35]). 260
Port GPIO Pad Data Output registers 0_3-68_71 (GPDO[0_3:68_71]). 262
GPIO Pad Data Input registers 0_3-68_71 (GPDI[0_3:68_71]). 262
Parallel GPIO Pad Data Out register 0-3(PGPDOI[0:3]).« oo o i 263
Parallel GPIO Pad Data In register 0-3 (PGPDI[0:3])t 264
Masked Parallel GPIO Pad Data Out register 0-6 (MPGPDOI[0:6])................. 264
Interrupt Filter Maximum Counter registers 0-24 (IFMC[0:24]) 265
Interrupt Filter Clock Prescaler Register (IFCPR). 266
Data port example arrangement showing configuration for different port width accesses 267
External interrupt pad diagram 268
€200z0 block diagram. 272
€200z0h block diagram.t 273
€200z0 Supervisor mode programmersmodel i . 276
€200z0h Supervisor mode programmersmodel 277
€200 User mode programmodel e 278
PBRIDGE interface.o 279
XBAR block diagram. 281
Processor core type (PCT) registert e e 288
Revision (REV) register e e e e 288
Platform XBAR Master Configuration (PLAMC) register. 289
Platform XBAR Slave Configuration (PLASC) register. 289
IPS Module Configuration (IMC) register 290
Miscellaneous Reset Status Register MRSR) 291
Miscellaneous Interrupt Register (MIR) 291
Miscellaneous User-Defined Control register (MUDCR). 292
ECC Configuration register (ECR) 293
ECC Status register (ESR) 295
ECC Error Generation register (EEGR) i 296
Flash ECC Address register (FEAR) e 299
Flash ECC Master Number Register (FEMR). it 299
Flash ECC Attributes (FEAT) Register.t 300
Flash ECC Data register (FEDR)ot e 301
RAM ECC Address register (REAR). e 301
RAM ECC Syndrome Register (RESR) e 302
RAM ECC Master Number register (REMR). i 304
RAM ECC Attributes (REAT) register.ot e 305
Platform RAM ECC Data register (PREDR) e 306
Spp_lps_Reg_Protection block diagram o 307
SPC560P40/34 Flash memory architecture i 311
1-cycle access, no buffering, noprefetch. i 324
3-cycle access, no prefetch, buffering disabled 325
3-cycle access, no prefetch, bufferingenabled L. 326
3-cycle access, prefetch and bufferingenabled oL 327
3-cycle access, stall-and-retry with BKn. RWWC =11x............. 328
3-cycle access, terminate-and-retry with BKn RWWC =10x. 329
Data Flash module structure. e 331
Code Flash module structure e e 332

Doc ID 16912 Rev 5 KYI

RMO0046

List of figures

Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.

574

Module Configuration Register (MCR) 342
Low/Mid Address Space Block Locking register (LML). 347
Non-Volatile Low/Mid Address Space Block Locking register (NVLML). 347
Secondary Low/mid address space block Lockingreg (SLL). 349
Non-Volatile Secondary Low/Mid Address Space Block Locking register (NVSLL). 349
Low/Mid Address Space Block Select register (LMS). 351
Address Register (ADR)ot e 352
Platform Flash Configuration Register 0 (PFCRO) it 354
Platform Flash Configuration Register 1 (PFCR1) L. 357
Platform Flash Access Protection Register (PFAPR) 359
User TestOregister (UTO0) oottt e e e 360
User Test 1register (UT1)t e e e 362
User Test 2register (UT2)t e e e 363
User Multiple Input Signature Register 0 (UMISRO). 364
User Multiple Input Signature Register 1 (UMISR1).......... 364
User Multiple Input Signature Register 2 (UMISR2). 365
User Multiple Input Signature Register 3 (UMISR3). 366
User Multiple Input Signature Register4 (UMISR4). 366
Non-Volatile private Censorship Password 0 register (NVPWDO) 367
Non-Volatile Private Censorship Password 1 register (NVPWD1) 368
Non-Volatile System Censoring Information 0 register (NVSCIO0). 368
Non-Volatile System Censoring Information 1 register (NVSCI1). 369
Non-Volatile User Options register (NVUSRO). it 370
eDMA block diagram 382
eDMA Control Register (EDMA_CR)ot e e 386
eDMA Error Status Register (EDMA_ESR) i i 388
eDMA Enable Request Low Register (EDMA_ERQRL). 390
eDMA Enable Error Interrupt Low Register (EDMA_EEIRL) 391
eDMA Set Enable Request Register (EDMA_SERQR) 391
eDMA Clear Enable Request Register (EDMA_CERQR). 392
eDMA Set Enable Error Interrupt Register (EDMA_SEEIR). 392
eDMA Set Enable Error Interrupt Register (EDMA_SEEIR). 393
eDMA Clear Interrupt Request (EDMA_CIRQR) i 394
eDMA Clear Error Register (EDMA_CERR). o i 394
eDMA Set START Bit Register (EDMA_SSBR)o 395
eDMA Clear DONE Status Bit Register (EDMA_CDSBR) 395
eDMA Interrupt Request Low Register (EDMA_IRQRL)t 396
eDMA Error Low Register (EDMA_ERL) 397
EDMA Hardware Request Status Register Low (EDMA_HRSL) 398
eDMA Channel n Priority Register (EDMA_CPRN). i 399
TCOD SIUCIUIE . . . o oot e e e e e e 401
eDMA operation, part 1. e 408
eDMA operation, part 2. 409
eDMA operation, part 3. 410
Example of multiple loop iterations. 415
Memory array 1ermMs e 416
DMA Mux block diagram. e 424
Channel Configuration Registers (CHCONFIG#n) i 427
DMA mux triggered channels diagram 430
DMA mux channel triggering: normal operation 430
DMA mux channel triggering: ignored trigger. 431
DMA mux channel 4—15 block diagram 432

Doc ID 16912 Rev 5 37/936

List of figures RMO0046

Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.

38/936

DSPIblock diagram e 437
DSPlwithqueues and eDMA e 438
DSPI Module Configuration Register (DSPIX_MCR) oo, 444
DSPI Transfer Count Register (DSPIX_TCR). i 447
DSPI Clock and Transfer Attributes Registers 0—7 (DSPIx_CTARn) 448
DSPI Status Register (DSPIX_SR) e 453
DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER) 455
DSPI PUSH TX FIFO Register (DSPIX_PUSHR) e 457
DSPI POP RX FIFO Register (DSPIX_POPR) 459
DSPI Transmit FIFO Register 0—4 (DSPIX_TXFRN). i 459
DSPI Receive FIFO Registers 0-4 (DSPIx_RXFRn) 460
SPI serial protoCol OVEIVIEW oo e e 461
DSPI start and stop state diagram L 463
Communications clock prescalersand scalers. 466
Peripheral Chip Select strobe timing e 468
DSPI transfer timing diagram (MTFE =0, CPHA=0,FMSZ=8) 470
DSPI transfer timing diagram (MTFE =0, CPHA=1,FMSZ=8) 471
DSPI modified transfer format (MTFE =1, CPHA =0, fgck =fgys/4) 473
DSPI modified transfer format (MTFE =1, CPHA =1, fgck =fgyg/4)t 474
Example of non-continuous format (CPHA=1,CONT=0)....................... 474
Example of continuous transfer (CPHA =1, CONT=1)............. 475
Polarity switching betweenframes 476
Continuous SCK timing diagram (CONT =0).ottt e e 477
Continuous SCK timing diagram (CONT =1).t 477
TX FIFO pointers and COUNter i e e 483
LIN topology Network e 487
LINFlex block diagram e 487
LINFlex operating modesottt e 489
LINFlexinloopbackmode. 490
LINFlexin selftestmode e 491
LIN control register 1 (LINCR1)o e 492
LIN interrupt enable register (LINIER) i 495
LIN status register (LINSR). e 497
LIN error status register (LINESR) e 500
UART mode control register (UARTCR). e 501
UART mode status register (UARTSR) e 503
LIN timeout control status register (LINTCSR) i 505
LIN output compare register (LINOCR) e 506
LIN timeout control register (LINTOCR)t e 506
LIN fractional baud rate register (LINFBRR). i 507
LIN integer baud rate register (LINIBRR) e 508
LIN checksum field register (LINCFR) e 509
LIN control register 2 (LINCR2)ot e e 509
Buffer identifier register (BIDR).o e 511
Buffer data register LSB (BDRL)ttt e 512
Buffer data register MSB (BDRM) e 512
Identifier filter enable register (IFER) 513
Identifier filter match index (IFMI) 514
Identifier filter mode register (IFMR). i 514
Identifier filter control register (IFCR2n) e 516
Identifier filter control register (IFCR2n+ 1) i 517
UART mode 8-bitdataframe 518

Doc ID 16912 Rev 5 Ky_’

RMO0046 List of figures
Figure 257. UART mode 9-bitdataframe e 518
Figure 258. Filter configuration—register organization 525
Figure 259. Identifier match index e 526
Figure 260. LIN synch field measurement. e 527
Figure 261. Header and response timeout e 529
Figure 262. FlexCAN block diagram e e 531
Figure 263. Message buffer structure 537
Figure 264. RX FIFO StruCtUreo e e e e 541
Figure 265. Module Configuration Register (MCR) i e 543
Figure 266. Control Register (CTRL)ottt e 546
Figure 267. Free Running Timer (TIMER) e s 550
Figure 268. Rx Global Mask register (RXGMASK) i e 550
Figure 269. Rx Buffer 14 Mask register (RX14MASK).o e 551
Figure 270. Rx Buffer 15 Mask register (RX15MASK). e 552
Figure 271. Error Counter Register (ECR). it e e e 553
Figure 272. Error and Status Register (ESR) i 554
Figure 273. Interrupt Masks 1 Register (IMASK1) i e i 556
Figure 274. Interrupt Flags 1 Register (IFLAGT) e 557
Figure 275. Rx Individual Mask Registers (RXIMRO-RXIMR31). 558
Figure 276. CAN engine clocking SCheme.t e 568
Figure 277. Segments withinthe bittime. 569
Figure 278. Arbitration, match, and move time windows i 570
Figure 279. ADC implementation diagram. i 576
Figure 280. Normal conversion flow e 578
Figure 281. Injected sample/conversion SEQUENCEo v it ittt e i e e e 579
Figure 282. Prescaler simplified block diagram 581
Figure 283. Sampling and conversion timings.t e 582
Figure 284. GUArded areattt it it e et e 584
Figure 285. Main Configuration Register (MCR) e 588
Figure 286. Main Status Register (MSR) 590
Figure 287. Interrupt Status Register (ISR) 591
Figure 288. Interrupt Mask Register (IMR) e 592
Figure 289. Channel Interrupt Mask Register 0 (CIMRO). oot 593
Figure 290. Watchdog Threshold Interrupt Status Register (WTISR) 593
Figure 291. Watchdog Threshold Interrupt Mask Register (WTIMR). 594
Figure 292. DMA Enable (DMAE) register. e 595
Figure 293. DMA Channel Select Register 0 (DMARO)ttt e 596
Figure 294. Threshold Control Register (TRCxX, X =1[0..3])ttt 597
Figure 295. Threshold Register (THRHLR[O:3])ot e 598
Figure 296. Conversion Timing Registers CTR[0]o o i it e 599
Figure 297. Normal Conversion Mask Register O (NCMRO) 600
Figure 298. Injected Conversion Mask Register 0 (JCMRO) 600
Figure 299. Power-Down Exit Delay Register (PDEDR)t 601
Figure 300. Channel Data Registers (CDR[0..26])ottt e 602
Figure 301. Cross triggering unit diagram it 604
Figure 302. TGS intriggered modet 605
Figure 303. Example timing for TGS intriggeredmode. 606
Figure 304. TGS insequential mode it 607
Figure 305. Example timing for TGS in sequentialmodeo, 607
Figure 306. TGS COUNTEI CASES . .« . v vttt et e it et e e e e e et e e e e e 608
Figure 307. Scheduler subunit. e 610
Figure 308. Reload error SCeNarioottt 614
ﬂ Doc ID 16912 Rev 5 39/936

List of figures RMO0046

Figure 309.
Figure 310.
Figure 311.
Figure 312.
Figure 313.
Figure 314.
Figure 315.
Figure 316.
Figure 317.
Figure 318.
Figure 319.
Figure 320.
Figure 321.
Figure 322.
Figure 323.
Figure 324.
Figure 325.
Figure 326.
Figure 327.
Figure 328.
Figure 329.
Figure 330.
Figure 331.
Figure 332.
Figure 333.
Figure 334.
Figure 335.
Figure 336.
Figure 337.
Figure 338.
Figure 339.
Figure 340.
Figure 341.
Figure 342.
Figure 343.
Figure 344.
Figure 345.
Figure 346.
Figure 347.
Figure 348.
Figure 349.
Figure 350.
Figure 351.
Figure 352.
Figure 353.
Figure 354.
Figure 355.
Figure 356.
Figure 357.
Figure 358.
Figure 359.
Figure 360.

40/936

Trigger Generator Sub-unit Input Selection Register (TGSISR). 621
Trigger Generator Sub-unit Control Register (TGSCR) 624
Trigger x Compare Register (TXCR, x=10...7)o i 624
TGS Counter Compare Register (TGSCCR) 625
TGS Counter Reload Register (TGSCRR)ottt e 625
Commands list control register 1 (CLCR1) i e 626
Commands list control register 2 (CLCR2) i e 626
Trigger handler control register 1 (THCR1) 627
Trigger handler control register 2 (THCR2) i 629
Commands list register x (x=1,...,.24) (CMS =0). ot i 631
Commands list register x (x=1,...,24) (CMS =1). i i 631
FIFO DMA control register (FDCR).o e e 632
FIFO control register (FCR)o e e e 633
FIFO threshold register (FTH) i e e 634
FIFO status register (FST)ot e e e 635
FIFO Right aligned data x (x=0,...,3) (FRX).o i e 636
FIFO signed Left aligned data x (x=0,....3) (FLX) 637
Cross triggering unit error flag register (CTUEFR) it 637
Cross triggering unit interrupt flag register (CTUIFR) oot 638
Cross triggering unit interrupt/DMA register (CTUIR) oo 639
Control ON time register (COTR)t e e e e e 640
Cross triggering unit control register (CTUCR). i 641
Cross triggering unit digital filter (CTUDF) e 642
Cross triggering unit power control register (CTUPCR) 642
PWM block diagram e e 645
PWM submodule block diagram e 646
Counter Register (CNT)o ot e et 651
Initial Count Register (INIT) e 651
Control 2 Register (CTRL2)ttt e et e s 652
Control 1 Register (CTRLT) ot et e s 654
Value Register 0 (VALO)ottt e e e e 656
Value Register 1 (VALY)o e 657
Value register 2 (VAL2)ot e e e 657
Value register 3 (VALSB)ttt e e 658
Value register 4 (VALA) e 658
Value register 5 (VALS)ot e 659
Output Control register (OCTRL)ot e e 659
Status register (STS)ot ii 660
Interrupt Enable register (INTEN) e 661
DMA Enable register (DMAEN) e 662
Output Trigger Control register (TCTRL)t e 663
Fault Disable Mapping register (DISMAP) e 664
Deadtime Count Register 0 (DTCNTO). oot vt e e e 665
Deadtime Count register 1 (DTCNTT) i e e 665
Output Enable register (OUTEN) e 665
Mask register (MASK). 666
Software Controlled Output Register (SWCOUT). i 667
Deadtime Source Select Register (DTSRCSEL) 668
Master Control Register (MCTRL)t e 670
Fault Control Register (FCTRL)ot i 671
Fault Status Register (FSTS)ot e 672
Fault Filter Register (FFILT) oo e e 673

Doc ID 16912 Rev 5 KYI

RMO0046

List of figures

Figure 361.
Figure 362.
Figure 363.
Figure 364.
Figure 365.
Figure 366.
Figure 367.
Figure 368.
Figure 369.
Figure 370.
Figure 371.
Figure 372.
Figure 373.
Figure 374.
Figure 375.
Figure 376.
Figure 377.
Figure 378.
Figure 379.
Figure 380.
Figure 381.
Figure 382.
Figure 383.
Figure 384.
Figure 385.
Figure 386.
Figure 387.
Figure 388.
Figure 389.
Figure 390.
Figure 391.
Figure 392.
Figure 393.
Figure 394.
Figure 395.
Figure 396.
Figure 397.
Figure 398.
Figure 399.
Figure 400.
Figure 401.
Figure 402.
Figure 403.
Figure 404.
Figure 405.
Figure 406.
Figure 407.
Figure 408.
Figure 409.
Figure 410.
Figure 411.
Figure 412.

574

Center-aligned exampleo 675
Edge-aligned example (INIT=VAL2 =VAL4) i 676
Phase-shifted outputs example e 677
Phase-shifted PWMs applied to a transformerprimary 678
Double switching output example. e 679
Multiple output trigger generationinhardware 680
Multiple output triggers over several PWMcycles 681
Sensorless BLDC commutation using the force out function 682
Clocking block diagram for each PWM submodule 683
Register reload [0giC.ot 684
Submodule timer synchronization. 684
PWM generation hardware. e 686
Force out 1ogiCo o e 688
Complementary channel pair i e e 689
Typical 3-phase AC Motor driveot e 689
Deadtime insertion and fine controllogic i 690
Deadtime insertion e 691
Deadtime distortion. e 692
Current-status sense scheme for deadtime correction. 693
Output voltage waveforms 694
Output I0giC SECHIONot 695
Fault decoder for PWMA 696
Automaticfault clearing 697
Manual fault clearing (FSAFE =0) e e 698
Manual fault clearing (FSAFE =1) e 698
Full cycle reload frequency change i 699
Half cycle reload frequency change e 699
Full and half cycle reload frequency change 700
PWMF reload interrupt request. e 700
eTimerblock diagram e 705
eTimer channel block diagram e 706
Compare register 1 (COMP). e e 710
Compare register 2 (COMP2). e e 711
Capture register 1 (CAPTT) .. .o e e 711
Capture register 2 (CAPT2) it e et 712
Load register (LOAD)ot 712
Hold register (HOLD)o o e e 713
Counter register (CNTR).o e e 713
Control register 1 (CTRLT)o it e e e 714
Control register 2 (CTRL2)ot e e e e e 716
Control register 3 (CTRL3)o ittt e e e 718
Status register (STS)ot ii 719
Interrupt and DMA enable register (INTDMA). 721
Comparator Load 1 (CMPLDT). ot e 722
Comparator Load 2 (CMPLD2).ot e 722
Compare and Capture Control register (CCCTRL).t 723
Input Filter register (FILT) oot e 725
Watchdog Time-out Low Word register (WDTOL)t 726
Watchdog Time-Out High Word register (WDTOH) 726
Channel Enable register (ENBL) i e 726
DMA Request 0 Select register (DREQO).ot e 727
DMA Request 1 Select register (DREQ1).ot e 727

Doc ID 16912 Rev 5 41/936

List of figures RMO0046

Figure 413.
Figure 414.
Figure 415.
Figure 416.
Figure 417.
Figure 418.
Figure 419.
Figure 420.
Figure 421.
Figure 422.
Figure 423.
Figure 424.
Figure 425.
Figure 426.
Figure 427.
Figure 428.
Figure 429.
Figure 430.
Figure 431.
Figure 432.
Figure 433.
Figure 434.
Figure 435.
Figure 436.
Figure 437.
Figure 438.
Figure 439.
Figure 440.
Figure 441.
Figure 442.
Figure 443.
Figure 444.
Figure 445.
Figure 446.
Figure 447.
Figure 448.
Figure 449.
Figure 450.
Figure 451.
Figure 452.
Figure 453.
Figure 454.
Figure 455.
Figure 456.
Figure 457.
Figure 458.
Figure 459.
Figure 460.
Figure 461.
Figure 462.
Figure 463.
Figure 464.

42/936

Quadrature incremental positionencoder. 730
Triggered Countmode (length =1). e 731
One-Shotmode (length = 1) e e e 731
Pulse Output mode.o e e 732
Variable PWM waveform 733
Register protection module block diagram 737
Register protection memory diagram e 738
Soft Lock Bit Register (SLBRN)t e 740
Global Configuration Register (GCR)t e 741
Change lock settings directly viaarea #4 742
Change lock settings for 16-bit protected addresses 743
Change lock settings for 32-bit protected addresses 743
Change lock settings for mixed protection 744
Enable locking via mirror module space (area #3) i 744
Enable locking for protected and unprotected addresses. 744
SWT Control Register (SWT_CR) e e e e 747
SWT Interrupt Register (SWT_IR) e e 749
SWT Time-Out register (SWT_TO).t e e 749
SWT Window register (SWT_WN)o e e e 750
SWT Service Register (SWT_SR) e e 751
SWT Counter Output register (SWT_CO).o e 751
SWT Service Register (SWT_SR)o e e 752
Fault Collection Unit (FCU) block diagram. 755
FCUfault handlingo e 756
Module Configuration Register (FCU_MCR) 760
Fault Flag Register (FCU_FFR) e 762
Frozen Fault Flag Register (FCU_FFFR) 763
Fake Fault Generation Register (FCU_FFGR). 764
Fault Enable Register (FCU_FER) e 765
Key Register (FCU_KR)ot e 766
Timeout Register (FCU_TR). ot e e e 766
Timeout Enable Register (FCU_TER) e 767
Module State Register (FCU_MSR)t e e 767
MC State Register (FCU_MCSR) e e 768
Frozen MC State Register (FCU_FMCSR). e 770
Functional block diagram e 771
Finite state machine e 772
Dual rail coding example e 774
Time switching protocol example e 774
Bi-stable coding example e 775
NMI Status Flag Register (NSR).o e 777
NMI Configuration Register (NCR) e 778
NMIpad diagram e 779
PIT block diagram. e 781
PIT Module Control Register (PITMCR)o e 783
Timer Load Value Register n (LDVALN) e 784
Current Timer Value register n (CVALN). oo e 785
Timer Control register n (TCTRLN). ot e 786
Timer Flag register n (TFLGN)ot tieeeeeeieeieae 787
Stopping and startingatimer e 788
Modifying running timer period e 788
Dynamically settinganew loadvalue. 788

Doc ID 16912 Rev 5 Ky_l

RMO0046

List of figures

Figure 465.
Figure 466.
Figure 467.
Figure 468.
Figure 469.
Figure 470.
Figure 471.
Figure 472.
Figure 473.
Figure 474.
Figure 475.
Figure 476.
Figure 477.
Figure 478.
Figure 479.
Figure 480.
Figure 481.
Figure 482.
Figure 483.
Figure 484.
Figure 485.
Figure 486.
Figure 487.
Figure 488.
Figure 489.
Figure 490.
Figure 491.
Figure 492.
Figure 493.
Figure 494.
Figure 495.
Figure 496.
Figure 497.
Figure 498.
Figure 499.
Figure 500.
Figure 501.
Figure 502.
Figure 503.
Figure 504.
Figure 505.
Figure 506.
Figure 507.
Figure 508.
Figure 509.
Figure 510.
Figure 511.
Figure 512.
Figure 513.
Figure 514.
Figure 515.
Figure 516.

574

STM Control Register (STM_CR)o e e 791
STM Count Register (STM_CNT)ot e e e 792
STM Channel Control Register (STM_CCRN) i 793
STM Channel Interrupt Register (STM_CIRn) i i 793
STM Channel Compare Register (STM_CMPN). i 794
CRCtop level diagramt e 797
CRC-CCITT engine concept schemet 798
CRC computation flow e 799
CRC Configuration Register (CRC_CFG).ot e 800
CRC Input Register (CRC_INP)ot e e e e 801
CRC Current Status Register (CRC_CSTAT). . . .ottt e e e 802
CRC Output Register (CRC_OUTP). e e e 802
DMA-CRC TransmisSion SEQUENCE ot vttt et e e e e e 804
DMA-CRC Reception SEQUENCEottt e e 805
Boot mode selection. e 807
Reset Configuration Half Word (RCHW). e 809
SPC560P40/34 Flash partitioningand RCHW search 810
BAM I0GIiC floWo 812
Password check flow 816
Start address, VLE bit and download sizeinbytes. 817
LINFlex bit timing in UART mode e 818
FIexCAN bit timingo 819
BAM Autoscan code flow 822
Baud measurement on UART boot. 822
BAM rate measurement flow during UART boot. o ... 823
Baud rate deviation between host and SPC560P40/34 825
Bit time measure. e 826
BAM rate measurement flow during FlexCAN boot 827
Censorship control in flash memory bootmode 834
Censorship control in serialbootmode i 835
Voltage Regulator Control register (VREG_CTL).t 838
Voltage Regulator Status register VREG_STATUS). 839
JTAG controller block diagram 841
5-bit Instruction register e 844
Device identification register. 844
Shifting data through aregister. 845
IEEE 1149.1-2001 TAP controller finite state machine. 847
€200z0 OnCE block diagramot e 851
OnCE Command register (OCMD) ottt 852
NDI functional block diagram e 855
€200z0h Debug ResSoUrCes i e 861
DVC1, DVC2 REQIStErS . . oottt e e e e e e 869
DBCRO RegiSter. . . .ottt 870
DBCRT ReQiSter. . . o ot 872
DBCR2 ReQiSter. . . o ottt e e 875
DBCR4 RegiSter. . . . oottt 879
DBSR Registerot 880
DBERCO Register.ot 883
OnCE TAP Controller and Registerst e 889
IEEE 1149.1-2001 TAP Controller State Machine 890
€200z0h OnCE Controller and Serial Interface oo, 894
ONCE Status Register e 894

Doc ID 16912 Rev 5 43/936

List of figures RMO0046

Figure 517.
Figure 518.
Figure 519.
Figure 520.

44/936

ONnCE Command Register e 896
ONCE Control Register.o e e e 899
CPU Scan Chain Register (CPUSCR)t e e 905
Control State Register (CTL)ot e e e e e 906

Doc ID 16912 Rev 5 IYI

RMO0046 Preface

Preface

Overview

The primary objective of this document is to define the functionality of the SPC560P40/34
family of microcontrollers for use by software and hardware developers. The SPC560P40/34
family is built on Power Architecture® technology and integrates technologies that are
important for today’s electrical hydraulic power steering (EHPS), electric power steering
(EPS), airbag applications, anti-lock braking systems (ABS), and motor control applications.

As with any technical documentation, it is the reader’s responsibility to be sure he or she is
using the most recent version of the documentation.

To locate any published errata or updates for this document, visit the ST Web site at
www.st.com.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products with the SPC560P40/34 device. It is assumed
that the reader understands operating systems, microprocessor system design, basic
principles of software and hardware, and basic details of the Power Architecture.

Chapter organization and device-specific information

This document includes chapters that describe:
® The device as a whole
® The functionality of the individual modules on the device

In the latter, any device-specific information is presented in the section “Information Specific
to This Device” at the beginning of the chapter.

References

In addition to this reference manual, the following documents provide additional information
on the operation of the SPC560P40/34:

e |EEE-ISTO 5001™ - 2003 and 2010, The Nexus 5001™ Forum Standard for a Global
Embedded Processor Debug Interface

e |EEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan
Architecture

K‘YI Doc ID 16912 Rev 5 45/936

www.st.com/

Introduction RMO0046

1

1.1

46/936

Introduction

The SPC560P40/34 microcontroller family

The SPC560P40/34 microcontroller is built on the Power Architecture® platform. The Power
Architecture based 32-bit microcontrollers represent the latest achievement in integrated
automotive application controllers. This device family integrates the most advanced and up-
to-date motor control design features.

The safety features included in SPC560P40/34 (such us fault collection unit, safety port or
flash memory and SRAM with ECC) support the design of system applications where safety
is a requirement.

The SPC560P40/34 addresses low-end chassis applications and implements the Harvard
bus interface version of the e200z0h core.

The €200 processor family is a set of CPU cores that implement low-cost versions of the
Power Architecture Book E architecture. The e200 processors are designed for deeply
embedded control applications that require low cost solutions rather than maximum
performance. The e200z0h processor integrates an integer execution unit, branch control
unit, instruction fetch and load/store units, and a multi-ported register file capable to
sustaining three read and two write operations per clock. Most integer instructions execute
in a single clock cycle. Branch target prefetching is performed by branch unit to allow single-
cycle branches in some cases. The e200z0h core is a single-issue, 32-bit Power
Architecture technology VLE only design with 32-bit general purpose registers (GPRs). All
arithmetic instructions that execute in the core operate on data in the general purpose
registers (GPRs). Instead of the base Power Architecture instruction set support, the
€200z0h core only implements the VLE (variable length encoding) APU, providing improved
code density.

The SPC560P40/34 has a single level of memory hierarchy consisting of 20 KB on-chip
SRAM and 320 KB (256 KB program + 64 KB data) of on-chip flash memory. Both the
SRAM and the flash memory can hold instructions and data.

The timer functions of the SPC560P40/34 are performed by the eTimer Modular Timer
System and FlexPWM. The eTimer module implements enhanced timer features (six
channels) including dedicated motor control quadrature decode functionality and DMA
support; the FlexPWM module consists of four submodules controlling a pair of PWM
channels each: three submodules may be used to control the three phases of a motor and
the additional pair to support DC-DC converter width modulation control.

Off-chip communication is performed by a suite of serial protocols including CANSs,
enhanced SPIs (DSPI), and SCIs (LINFlex).

The System Integration Unit Lite (SIUL) performs several chip-wide configuration functions.
Pad configuration and general-purpose input/output (GPIO) are controlled from the SIUL.
External interrupts and reset control are also found in the SIUL. The internal multiplexer
sub-block (IOMUX) provides multiplexing of daisy chaining the DSPIs and external interrupt
signal.

As the SPC560P40/34 is built on a wider legacy of Power Architecture-based devices, when
applicable and possible, reuse or enhancement of existing IP, design and concepts is
adopted.

Doc ID 16912 Rev 5 KYI

RM0046 Introduction
1.2 Target applications
The SPC560P40/34 belongs to an expanding range of automotive-focused products
designed to address and target the following chassis and safety market segments:
® Electric hydraulic power steering (EHPS)
® Lower end of electric power steering (EPS)
® Airbag applications
® Anti-lock braking systems (ABS)
® Motor control applications
EHPS and EPS systems typically feature sophisticated and advanced electrical motor
control periphery with special enhancements in the area of pulse width modulation, highly
flexible timers, and functional safety.
1.21 Application examples
Electric power steering
Figure 1 outlines a typical electric power steering application built around the
SPC560P40/34 microcontroller.
PMSM \
3-phase Low Voltage Power Stage .
Position Sensor ‘¢
o U DC Bus y % Gearb
o L 5 b0
Position Sensor
PWM Physical Layer
Driver Signal ¢
System Reverse Bat Conditioni . Signal
Chip —e Vce g
—e Vanalog o &%
—e Vref S8s -#-_I:I— 1 Relay
Fast ADC rer -
<1 ps, 10-bit
Relay Driver
SPC560P40/34 Safety Port
Windowed
Watchdog
Hi-speed CAN Core Faults
Physical Layer FlexCAN Motor
Control (Valves, Pump) n Sensors
DSPI PWM I
10 ns res

Figure 1.

Doc ID 16912 Rev 5

Complex Input n
Hardware Modules
Watchdog

I—» Safety Relay

Electric power steering application

47/936

Introduction RMO0046

Airbag

Figure 2 outlines a typical airbag application built around the SPC560P40/34
microcontroller.

A
i

X/Y - accel.

CAN Physical Body network (dashboard)
T
Layer
LIN Physical Occupant detection
» _—eeuRgn
Layer

Satellite I/F
Satellite I/F
Satellite I/F

A
Y

Physical
Interface
Physical
Interface

FlexCAN

LINFlex

A
\

O
O
Physical N
Interface
(O

VBoosT
Physical -

Interface O Satellite I/F |

- 2 Squib 1
DSPI DSPI | < > .

4-ch Squib ——» Squib 2
Driver - Squib 3
) Squib 4

: Buckle I/F

~_ \j - - Custom VBoosT |

e i G i) S Bmfs
Vign Vioaic

Power Supply Control Chain Vio

~ |~ 5y
'

Figure 2. Airbag application

1.3 Features

Table 1 provides a summary of different members of the SPC560P40/34 family and their
features—relative to full-featured version—to enable a comparison among the family
members and an understanding of the range of functionality offered within this family.

Table 1. SPC560P40/34 device comparison

Feature SPC560P34 SPC560P40
Full-featured Full-featured

Code flash memory (with ECC) 192 KB 256 KB
Data flash memory / EE option (with ECC) 64 KB
SRAM (with ECC) 12 KB 20 KB
Processor core 32-bit e200z0h
Instruction set VLE (variable length encoding)
CPU performance 0-64 MHz
FMPLL (frequency-modulated phase-locked loop) 1
module

48/936 Doc ID 16912 Rev 5 IYI

RMO0046

Introduction

Table 1. SPC560P40/34 device comparison (continued)

Feature SPC560P34 SPC560P40
Full-featured Full-featured
INTC (interrupt controller) channels 120
PIT (periodic interrupt timer) 1 (with four 32-bit timers)
eDMA (enhanced direct memory access) channels 16
FlexCAN (controller area network) 1M 2.

Yes (via second FlexCAN

Safety port No module)
FCU (fault collection unit) Yes
CTU (cross triggering unit) Yes Yes
eTimer 1 (16-bit, 6 channels)

8 8
FlexPWM (pulse-width modulation) channels (capture capabity not (capture capability not

supported) supported)

Analog-to-digital converter (ADC) 1 (10-bit, 16 channels)

2 2
LINFlex (1 x Master/Slave, (1 x Master/Slave,

1 x Master only) 1 x Master only)

DSPI (deserial serial peripheral interface) 2 3
CRC (cyclic redundancy check) unit Yes
Junction temperature sensor No
JTAG controller Yes

Nexus port controller (NPC)

Yes (Nexus Class 1)

Digital power supply®)

3.3 V or 5 V single supply with external transistor

Analog power supply 3.3Vor5V
Supply
Internal RC oscillator 16 MHz
External crystal oscillator 4-40 MHz
Packages LQFPes
g LQFP100
Temperature Standard ambient temperature —401t0 125 °C

1. Each FlexCAN module has 32 message buffers.

2. One FlexCAN module can act as a safety port with a bit rate as high as 8 Mbit/s at 64 MHz.

3. The different supply voltages vary according to the part number ordered.

SPC560P40/34 is available in two configurations having different features: Full-featured and
airbag. Table 2 shows the main differences between the two versions of the SPC560P40

MCU.

KYI Doc ID 16912 Rev 5 49/936

Introduction RMO0046

Table 2. SPC560P40 device configuration differences

Configuration
Feature
Airbag Full-featured

SRAM (with ECC) 16 KB 20 KB
FlexCAN (controller area network) 1 2

Yes
Safet t N

atety por © (via second FlexCAN module)
8
FlexPWM (pulse-width modulation) channels No (capture capability not
supported)

CTU (cross triggering unit) No Yes

Figure 1.4 shows a top-level block diagram of the SPC560P40/34 microcontroller.

50/936 Doc ID 16912 Rev 5 KYI

RMO0046 Introduction

External ballast €20020 Core
o 1.2 V regulator 32-bit
- control general
purpose
registers
< XOSC
Integgr Special Exception S Interrupt o
execution purpose handler <> controller <>
16 MHz unit registers
RC oscillator -
Variable
Instruction length
FMPLL_O unit encoded
(System) instructions
Branch
<> > Load/store
JTAG > prediction unit
unit
Nexus port
controller B Nexus 1
eDMA
16 channels Instruction Data
32-bit 32-bit
A
Y Master Master Y Y Master
Crossbar switch (XBAR, AMBA 2.0 v6 AHB)
Slaved Slave A A siave
\i } \i = 2| w
2 S O] - =
— T (&) s = = = 7]
Code Flash | | Data Flash || SRAM = 2/ 8|53 gllallellsla] e
(with ECC) | | (with ECC) | | (with ECC) = = =
A U Y Y Y Y Y Y Y Y Y
Y \i
Peripheral bridge
A \ / A A A A A A A
\i / \i Y \i \i \i \i \i \i
= § 5
= z 9]
© s o= — 3
=2 8= o |E5| 55| |xz| || | =] |3
S o <z B kel |Pa| |VZ| | B 8 (4
o = - w &
A A A A A A A A
\i \i A \i A \i \i
Legend:
ADC Analog-to-digital converter LINFlex Serial communication interface (LIN support)
BAM Boot assist module MC_CGM Clock generation module
CRC Cyclic redundancy check MC_ME Mode entry module
CTU Cross triggering unit MC_PCU Power control unit
DSPI Deserial serial peripheral interface MC_RGM Reset generation module
ECSM Error correction status module PIT Periodic interrupt timer
eDMA Enhanced direct memory access SIUL System Integration unit Lite
eTimer Enhanced timer SRAM Static random-access memory
FCU Fault collection unit SSCM System status and configuration module
Flash Flash memory ST™M System timer module
FlexCAN Controller area network SWT Software watchdog timer
FlexPWM Flexible pulse width modulation WKPU Wakeup unit
FMPLL Frequency-modulated phase-locked loop XOSC External oscillator
INTC Interrupt controller XBAR Crossbar switch
JTAG JTAG controller

Figure 3. Block diagram (SPC560P40 full-featured configuration)

KYI Doc ID 16912 Rev 5 51/936

Introduction RMO0046

1.4

1.5

52/936

Critical performance parameters

® Fully static operation, 0-64 MHz
® —40°C to 150 °C junction temperature
® Low power design
— Less than 450 mW power dissipation
— Halt and STOP mode available for power reduction
— Resuming from Halt/STOP mode can be initiated via external pin
® Fabricated in 90 nm process
® 1.2V nominal internal logic
® Nexus pins operate at Vpp,o (no dedicated power supply)
— Unused pins configurable as GPIO
® 10-bit ADC conversion time < 1 ps
® Internal voltage regulator (VREG) with external ballast transistor enables control with a
single input rail
— 3.0V-3.6 Vor4.5V-5.5V input supply voltage
o Configurable pins
— Selectable slew rate for EMI reduction
— Selectable pull-up, pull-down, or no pull on all pins
— Selectable open drain
— Support for 3.3 V or 5V I/O levels

Chip-level features

On-chip modules available within the family include the following features:
® Single issue, 32-bit CPU core complex (€200z0h)
— Compliant with Power Architecture™ embedded category
— Variable Length Encoding (VLE)
® Memory
— Up to 256 KB on-chip Code Flash with ECC and erase/program controller

— Up to additional 64 (4 x 16) KB on-chip Data Flash with ECC for EEPROM
emulation

— Up to 20 KB on-chip SRAM with ECC
e Fail-safe protection

— Programmable watchdog timer

— Non-maskable interrupt

— Fault collection unit
® Nexus L1 interface

Doc ID 16912 Rev 5 KYI

RMO0046 Introduction

® Interrupts and events
— 16-channel eDMA controller
— 16 priority level controller
— Up to 25 external interrupts
— PIT implements four 32-bit timers
— 120 interrupts are routed via INTC
® General purpose I/Os
— Individually programmable as input, output or special function
— 37 onLQFP64
— 64 0onLQFP100
® 1 general purpose eTimer unit
— 6 timers each with up/down capabilities
— 16-bit resolution, cascadeable counters
Quadrature decode with rotation direction flag
Double buffer input capture and output compare
® Communications interfaces
— 2 LINFlex channels (1 x Master/Slave, 1 x Master Only)

— Up to 3 DSPI channels with automatic chip select generation (up to 8/4/4 chip
selects)

— 1 FlexCAN interface (2.0B Active) with 32 message buffers

— 1 safety port based on FlexCAN with 32 message buffers and up to 8 Mbit/s at
64 MHz capability usable as second CAN when not used as safety port

® One 10-bit analog-to-digital converter (ADC)
— Upto 16 input channels (16 ch on LQFP100 and 12 ch on LQFP64)
— Conversion time < 1 us including sampling time at full precision
— Programmable Cross Triggering Unit (CTU)
— 4 analog watchdogs with interrupt capability
® On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM)

® 1 FlexPWM unit
— 8 complementary or independent outputs with ADC synchronization signals
1.6 Module features
1.6.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features:
® High performance €200z0 core processor for managing peripherals and interrupts
® Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
® Harvard architecture
® Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions
— Results in smaller code size footprint
— Minimizes impact on performance

K‘YI Doc ID 16912 Rev 5 53/936

Introduction RMO0046

1.6.2

1.6.3

54/936

® Branch processing acceleration using lookahead instruction buffer

® Load/store unit

— 1-cycle load latency

— Misaligned access support

— No load-to-use pipeline bubbles

Thirty-two 32-bit general purpose registers (GPRs)

Separate instruction bus and load/store bus Harvard architecture
Hardware vectored interrupt support

Reservation instructions for implementing read-modify-write constructs
Long cycle time instructions, except for guarded loads, do not increase interrupt latency
Extensive system development support through Nexus debug port
Non-maskable interrupt support

Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between three
master ports and three slave ports. The crossbar supports a 32-bit address bus width and a
32-bit data bus width.

The crossbar allows for two concurrent transactions to occur from any master port to any
slave port; but one of those transfers must be an instruction fetch from internal flash
memory. If a slave port is simultaneously requested by more than one master port,
arbitration logic will select the higher priority master and grant it ownership of the slave port.
All other masters requesting that slave port will be stalled until the higher priority master
completes its transactions. Requesting masters will be treated with equal priority and will be
granted access a slave port in round-robin fashion, based upon the ID of the last master to
be granted access.
The crossbar provides the following features:
® 3 master ports:

— e200z0 core complex instruction port

— e200z0 core complex Load/Store Data port

- eDMA
® 3 slave ports:

— Flash memory (Code and Data)

- SRAM

— Peripheral bridge
® 32-bit internal address, 32-bit internal data paths
® Fixed Priority Arbitration based on Port Master
® Temporary dynamic priority elevation of masters

Enhanced direct memory access (eDMA)

The enhanced direct memory access (eDMA) controller is a second-generation module
capable of performing complex data movements via 16 programmable channels, with
minimal intervention from the host processor. The hardware micro architecture includes a
DMA engine which performs source and destination address calculations, and the actual

Doc ID 16912 Rev 5 KYI

RMO0046

Introduction

1.6.4

data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels.

The eDMA module provides the following features:

® 16 channels support independent 8-, 16- or 32-bit single value or block transfers

® Supports variable-sized queues and circular queues

® Source and destination address registers are independently configured to either post-
increment or to remain constant

® Each transfer is initiated by a peripheral, CPU, or eDMA channel request

® Each eDMA channel can optionally send an interrupt request to the CPU on completion
of a single value or block transfer

® DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer
and CTU

® Programmable DMA channel multiplexer allows assignment of any DMA source to any
available DMA channel with as many as 30 request sources

® eDMA abort operation through software

Flash memory

The SPC560P40/34 provides 320 KB of programmable, non-volatile, flash memory. The
non-volatile memory (NVM) can be used for instruction and/or data storage. The flash
memory module is interfaced to the system bus by a dedicated flash memory controller. It
supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to
flash memory. The module contains four 128-bit wide prefetch buffers. Prefetch buffer hits
allow no-wait responses. Normal flash memory array accesses are registered and are
forwarded to the system bus on the following cycle, incurring two wait-states.
The flash memory module provides the following features:
® As much as 320 KB flash memory

— 6 blocks (32 KB + 2x16 KB + 32 KB + 32 KB + 128 KB) code flash memory

— 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory

— Full Read-While-Write (RWW) capability between code flash memory and data
flash memory

® Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch
buffers can be configured to prefetch code or data or both)

® Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page
buffer miss at 64 MHz

® Hardware managed flash memory writes handled by 32-bit RISC Krypton engine

® Hardware and software configurable read and write access protections on a per-master
basis

® Configurable access timing allowing use in a wide range of system frequencies

® Multiple-mapping support and mapping-based block access timing (up to 31 additional
cycles) allowing use for emulation of other memory types

® Software programmable block program/erase restriction control
® Erase of selected block(s)

Doc ID 16912 Rev 5 55/936

Introduction RMO0046

® Read page sizes
— Code flash memory: 128 bits (4 words)
— Data flash memory: 32 bits (1 word)
® ECC with single-bit correction, double-bit detection for data integrity
— Code flash memory: 64-bit ECC
— Data flash memory: 32-bit ECC

® Embedded hardware program and erase algorithm
® Erase suspend and program abort
® Censorship protection scheme to prevent flash memory content visibility
® Hardware support for EEPROM emulation
1.6.5 Static random access memory (SRAM)

The SPC560P40/34 SRAM module provides up to 20 KB of general-purpose memory.

The SRAM module provides the following features:

® Supports read/write accesses mapped to the SRAM from any master

® Up to 20 KB general purpose SRAM

® Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of
memory

® Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8-
and 16-bit writes if back-to-back with a read to same memory block

1.6.6 Interrupt controller (INTC)

The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt
requests, suitable for statically scheduled hard real-time systems. The INTC handles 128
selectable-priority interrupt sources.

For high-priority interrupt requests, the time from the assertion of the interrupt request by
the peripheral to the execution of the interrupt service routine (ISR) by the processor has
been minimized. The INTC provides a unique vector for each interrupt request source for
quick determination of which ISR has to be executed. It also provides a wide number of
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To
allow the appropriate priorities for each source of interrupt request, the priority of each
interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the same resource can not preempt each other.

The INTC provides the following features:

® Unique 9-bit vector for each separate interrupt source

® 8 software triggerable interrupt sources

® 16 priority levels with fixed hardware arbitration within priority levels for each interrupt
source

56/936 Doc ID 16912 Rev 5 KYI

RMO0046 Introduction

® Ability to modify the ISR or task priority: modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.

® 1 external high priority interrupt (NMI) directly accessing the main core and I/O
processor (IOP) critical interrupt mechanism

1.6.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:
® System configuration and status
— Memory sizes/status
— Device mode and security status
— Determine boot vector
— Search code flash for bootable sector
— DMA status
® Debug status port enable and selection
® Bus and peripheral abort enable/disable

1.6.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC560P40/34:
® Lock detect circuitry continuously monitors lock status

® Loss of clock (LOC) detection for PLL outputs

® Programmable output clock divider (=1, +2, +4, +8)

°

FlexPWM module and eTimer module running at the same frequency as the e200z0h
core

® Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency
trimming by user application

1.6.9 Frequency-modulated phase-locked loop (FMPLL)

The FMPLL allows the user to generate high speed system clocks from a 4-40 MHz input
clock. Further, the FMPLL supports programmable frequency modulation of the system
clock. The PLL multiplication factor, output clock divider ratio are all software configurable.
The FMPLL has the following major features:

® Input clock frequency: 4-40 MHz

® Maximum output frequency: 64 MHz

® Voltage controlled oscillator (VCO)—frequency 256-512 MHz

°

Reduced frequency divider (RFD) for reduced frequency operation without forcing the
FMPLL to relock

Frequency-modulated PLL
— Modulation enabled/disabled through software
— Triangle wave modulation

® Programmable modulation depth (+0.25% to +4% deviation from center frequency):
programmable modulation frequency dependent on reference frequency

® Self-clocked mode (SCM) operation

K‘YI Doc ID 16912 Rev 5 57/936

Introduction RMO0046

1.6.10

1.6.11

1.6.12

1.6.13

1.6.14

58/936

Main oscillator

The main oscillator provides these features:

® Input frequency range: 4—40 MHz

® Crystal input mode or oscillator input mode
® PLL reference

Internal RC oscillator

This device has an RC ladder phase-shift oscillator. The architecture uses constant current
charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap
reference voltage.

The RC oscillator provides these features:

® Nominal frequency 16 MHz

® +5% variation over voltage and temperature after process trim

® Clock output of the RC oscillator serves as system clock source in case loss of lock or
loss of clock is detected by the PLL

® RC oscillator is used as the default system clock during startup

Periodic interrupt timer (PIT)

The PIT module implements these features:

® 4 general-purpose interrupt timers

® 32-bit counter resolution

® Clocked by system clock frequency

® Each channel usable as trigger for a DMA request

System timer module (STM)

The STM implements these features:

® One 32-bit up counter with 8-bit prescaler

® Four 32-bit compare channels

® Independent interrupt source for each channel
® Counter can be stopped in debug mode

Software watchdog timer (SWT)

The SWT has the following features:

32-bit time-out register to set the time-out period

Programmable selection of window mode or regular servicing
Programmable selection of reset or interrupt on an initial time-out
Master access protection

Hard and soft configuration lock bits

Reset configuration inputs allow timer to be enabled out of reset

Doc ID 16912 Rev 5 KYI

RMO0046

Introduction

1.6.15

1.6.16

1.6.17

Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is
malfunctioning.

The FCU module has the following features:

® FCU status register reporting the device status

® Continuous monitoring of critical fault signals

® User selection of critical signals from different fault sources inside the device
°

Critical fault events trigger 2 external pins (user selected signal protocol) that can be
used externally to reset the device and/or other circuitry (for example, a safety relay)

® Faults are latched into a register

System integration unit — Lite (SIUL)

The SPC560P40/34 SIUL controls MCU pad configuration, external interrupt, general
purpose I/O (GPIO), and internal peripheral multiplexing.

The pad configuration block controls the static electrical characteristics of 1/0 pins. The
GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.
The SIUL provides the following features:

® Centralized general purpose input output (GPIO) control of up to 49 input/output pins
and 16 analog input-only pads (package dependent)

® All GPIO pins can be independently configured to support pull-up, pull-down, or no pull
® Reading and writing to GPIO supported both as individual pins and 16-bit wide ports

® All peripheral pins, except ADC channels, can be alternatively configured as both
general purpose input or output pins

® ADC channels support alternative configuration as general purpose inputs
® Direct readback of the pin value is supported on all pins through the SIUL

o Configurable digital input filter that can be applied to some general purpose input pins
for noise elimination

® Up to 4 internal functions can be multiplexed onto 1 pin

Boot and censorship

Different booting modes are available in the SPC560P40/34: booting from internal flash
memory and booting via a serial link.

The default booting scheme uses the internal flash memory (an internal pull-down resistor is
used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the
boot assist module software).

A censorship scheme is provided to protect the content of the flash memory and offer
increased security for the entire device.

A password mechanism is designed to grant the legitimate user access to the non-volatile
memory.

Boot assist module (BAM)

The BAM is a block of read-only memory that is programmed once and is identical for all
SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed

Doc ID 16912 Rev 5 59/936

Introduction RMO0046

every time the device is powered on if the alternate boot mode has been selected by the
user.

The BAM provides the following features:

® Serial bootloading via FlexCAN or LINFlex

® Ability to accept a password via the used serial communication channel to grant the
legitimate user access to the non-volatile memory

1.6.18 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible
information about the platform configuration and revision levels, a reset status register, a
software watchdog timer, wakeup control for exiting sleep modes, and information on
platform memory errors reported by error-correcting codes and/or generic access error
information for certain processor cores.

The Error Correction Status Module supports a number of miscellaneous control functions
for the platform. The ECSM includes these features:

® Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented

® For test purposes, optional registers to specify the generation of double-bit memory
errors are enabled on the SPC560P40/34.

The sources of the ECC errors are:

® Flash memory

e SRAM

1.6.19 Peripheral bridge (PBRIDGE)

The PBRIDGE implements the following features:
® Duplicated periphery

® Master access privilege level per peripheral (per master: read access enable; write
access enable)

® Write buffering for peripherals
® Checker applied on PBRIDGE output toward periphery
® Byte endianess swap capability

1.6.20 Controller area network (FlexCAN)

The SPC560P40/34 MCU contains one controller area network (FlexCAN) module. This
module is a communication controller implementing the CAN protocol according to Bosch
Specification version 2.0B. The CAN protocol was designed to be used primarily as a
vehicle serial data bus, meeting the specific requirements of this field: real-time processing,
reliable operation in the EMI environment of a vehicle, cost-effectiveness and required
bandwidth. The FlexCAN module contains 32 message buffers.

60/936 Doc ID 16912 Rev 5 KYI

RMO0046

Introduction

1.6.21

The FlexCAN module provides the following features:

Full implementation of the CAN protocol specification, version 2.0B
— Standard data and remote frames

— Extended data and remote frames

— Up to 8-bytes data length

— Programmable bit rate up to 1 Mbit/s

32 message buffers of up to 8-bytes data length

Each message buffer configurable as Rx or Tx, all supporting standard and extended
messages

Programmable loop-back mode supporting self-test operation

3 programmable mask registers

Programmable transmit-first scheme: lowest ID or lowest buffer number

Time stamp based on 16-bit free-running timer

Global network time, synchronized by a specific message

Maskable interrupts

Independent of the transmission medium (an external transceiver is assumed)
High immunity to EMI

Short latency time due to an arbitration scheme for high-priority messages
Transmit features

— Supports configuration of multiple mailboxes to form message queues of scalable
depth

— Arbitration scheme according to message ID or message buffer number
— Internal arbitration to guarantee no inner or outer priority inversion

— Transmit abort procedure and notification

Receive features

— Individual programmable filters for each mailbox

— 8 mailboxes configurable as a 6-entry receive FIFO

— 8 programmable acceptance filters for receive FIFO

Programmable clock source

— System clock

— Direct oscillator clock to avoid PLL jitter

Safety port (FlexCAN)

The SPC560P40/34 MCU has a second CAN controller synthesized to run at high bit rates
to be used as a safety port. The CAN module of the safety port provides the following

features:

® Identical to the FlexCAN module

® Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN
modules (no physical transceiver required)

® 32 message buffers of up to 8-bytes data length

® Can be used as a second independent CAN module

Doc ID 16912 Rev 5 61/936

Introduction

RMO0046

1.6.22

1.6.23

62/936

Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the SPC560P40/34 features the
following:

Supports LIN Master mode (both instances), LIN Slave mode (only one instance) and
UART mode

LIN state machine compliant to LIN1.3, 2.0 and 2.1 specifications
Handles LIN frame transmission and reception without CPU intervention
LIN features

— Autonomous LIN frame handling

— Message buffer to store Identifier and up to 8 data bytes

— Supports message length of up to 64 bytes

— Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing,
checksum, and time-out)

— Classic or extended checksum calculation

— Configurable Break duration of up to 36-bit times

— Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
— Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
— Interrupt-driven operation with 16 interrupt sources

LIN slave mode features:

— Autonomous LIN header handling

— Autonomous LIN response handling

— Optional discarding of irrelevant LIN responses using ID filter

UART mode:

— Full-duplex operation

— Standard non return-to-zero (NRZ) mark/space format

— Data buffers with 4-byte receive, 4-byte transmit

— Configurable word length (8-bit or 9-bit words)

— Error detection and flagging

— Parity, Noise and Framing errors

— Interrupt-driven operation with four interrupt sources

— Separate transmitter and receiver CPU interrupt sources

— 16-bit programmable baud-rate modulus counter and 16-bit fractional
— 2 receiver wake-up methods

Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial
interface for communication between the SPC560P40/34 MCU and external devices.

The DSPI modules provide these features:

Full duplex, synchronous transfers
Master or slave operation
Programmable master bit rates
Programmable clock polarity and phase

Doc ID 16912 Rev 5 KYI

RMO0046 Introduction
® End-of-transmission interrupt flag
® Programmable transfer baud rate
® Programmable data frames from 4 to 16 bits
® Up to 8 chip select lines available:
— 8onDSPIO
— 4 eachon DSPI_1 and DSPI_2
® 8 clock and transfer attributes registers
® Chip select strobe available as alternate function on one of the chip select pins for
deglitching
® FIFOs for buffering up to 4 transfers on the transmit and receive side
® Queueing operation possible through use of the 1/O processor or eDMA
® General purpose I/O functionality on pins when not used for SPI
1.6.24 Pulse width modulator (FlexPWM)

The pulse width modulator module (PWM) contains four PWM submodules each of which is
set up to control a single half-bridge power stage. There are also three fault channels.

This PWM is capable of controlling most motor types: AC induction motors (ACIM),
permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors
(BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.

The FlexPWM block implements the following features:

16-bit resolution for center, edge-aligned, and asymmetrical PWMs

Clock frequency same as that used for e200z0h core

PWM outputs can operate as complementary pairs or independent channels
Can accept signed numbers for PWM generation

Independent control of both edges of each PWM output

Synchronization to external hardware or other PWM supported

Double buffered PWM registers

— Integral reload rates from 1 to 16

— Half cycle reload capability

Multiple ADC trigger events can be generated per PWM cycle via hardware
Write protection for critical registers

Fault inputs can be assigned to control multiple PWM outputs
Programmable filters for fault inputs

Independently programmable PWM output polarity

Independent top and bottom deadtime insertion

Each complementary pair can operate with its own PWM frequency and deadtime
values

Individual software-control for each PWM output
All outputs can be programmed to change simultaneously via a “Force Out” event
PWMX pin can optionally output a third PWM signal from each submodule

Channels not used for PWM generation can be used for buffered output compare
functions

Doc ID 16912 Rev 5 63/936

Introduction

RMO0046

1.6.25

64/936

Channels not used for PWM generation can be used for input capture functions

Enhanced dual-edge capture functionality
eDMA support with automatic reload
2 fault inputs

Capture capability for PWMA, PWMB, and PWMX channels not supported

eTimer

The SPC560P40/34 includes one eTimer module which provides six 16-bit general purpose
up/down timer/counter units with the following features:

Clock frequency same as that used for the e200z0h core
Individual channel capability

— Input capture trigger

— Output compare

— Double buffer (to capture rising edge and falling edge)

— Separate prescaler for each counter

— Selectable clock source

— 0-100% pulse measurement

— Rotation direction flag (quad decoder mode)

Maximum count rate

— External event counting: max. count rate = peripheral clock/2
— Internal clock counting: max. count rate = peripheral clock
Counters are:

— Cascadable

— Preloadable

Programmable count modulo

Quadrature decode capabilities

Counters can share available input pins

Count once or repeatedly

Pins available as GPIO when timer functionality not in use

Doc ID 16912 Rev 5

RMO0046 Introduction
1.6.26 Analog-to-digital converter (ADC) module
The ADC module provides the following features:
Analog part:
® 1 on-chip analog-to-digital converter
— 10-bit AD resolution
— 1 sample and hold unit
— Conversion time, including sampling time, less than 1 ps (at full precision)
— Typical sampling time is 150 ns minimum (at full precision)
— DNL/INL +1 LSB
- TUE<1.5LSB
— Single-ended input signal up to 3.3 V/5.0 V
— 3.3V/5.0V input reference voltage
— ADC and its reference can be supplied with a voltage independent from Vpp o
— ADC supply can be equal or higher than Vpp o
— ADC supply and ADC reference are not independent from each other (both
internally bonded to same pad)
— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles
Digital part:
® 16 input channels
® 4 analog watchdogs comparing ADC results against predefined levels (low, high,
range) before results are stored in the appropriate ADC result location
® 2 modes of operation: Motor Control mode or Regular mode
® Regular mode features
— Register based interface with the CPU: control register, status register and 1 result
register per channel
— ADC state machine managing 3 request flows: regular command, hardware
injected command and software injected command
— Selectable priority between software and hardware injected commands
— DMA compatible interface
® CTU-controlled mode features
— Triggered mode only
— 4 independent result queues (1x16 entries, 2x8 entries, 1x4 entries)
— Result alignment circuitry (left justified and right justified)
— 32-bit read mode allows to have channel ID on one of the 16-bit part
— DMA compatible interfaces
1.6.27 Cross triggering unit (CTU)

The cross triggering unit allows automatic generation of ADC conversion requests on user
selected conditions without CPU load during the PWM period and with minimized CPU load

for dynamic configuration.

Doc ID 16912 Rev 5 65/936

Introduction RMO0046

1.6.28

1.6.29

1.6.30

66/936

It implements the following features:

® Double buffered trigger generation unit with up to 8 independent triggers generated
from external triggers

® Trigger generation unit configurable in sequential mode or in triggered mode

® Each trigger can be appropriately delayed to compensate the delay of external low
pass filter

Double buffered global trigger unit allowing eTimer synchronization and/or ADC
command generation

Double buffered ADC command list pointers to minimize ADC-trigger unit update
Double buffered ADC conversion command list with up to 24 ADC commands
Each trigger capable of generating consecutive commands

ADC conversion command allows to control ADC channel, single or synchronous
sampling, independent result queue selection

Nexus Development Interface (NDI)

The NDI (Nexus Development Interface) block is compliant with Nexus Class 1 of the IEEE-
ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring
external address and data pins for internal visibility. The NDI block is an integration of
several individual Nexus blocks that are selected to provide the development support
interface for this device. The NDI block interfaces to the host processor and internal busses
to provide development support as per the IEEE-ISTO 5001-2003 Nexus Class 1 standard.
The development support provided includes access to the MCU’s internal memory map and
access to the processor’s internal registers.

The NDI provides the following features:

® Configured via the IEEE 1149.1

® All Nexus port pins operate at Vpp,o (no dedicated power supply)
® Nexus Class 1 supports Static debug

Cyclic redundancy check (CRC)
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The
CRC module features:
® Support for CRC-16-CCITT (x25 protocol):
x4+ x124 X041
® Support for CRC-32 (Ethernet protocol):
-)(32+X26+X23+)(22+X16+X12+X11 +X10+X8+X7+X5+)("+X2+X+1

® Zero wait states for each write/read operations to the CRC_CFG and CRC_INP
registers at the maximum frequency

IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and
connectivity while remaining transparent to system logic when not in test mode. All data
input to and output from the JTAGC block is communicated in serial format. The JTAGC
block is compliant with the IEEE standard.

Doc ID 16912 Rev 5 KYI

RMO0046

Introduction

1.6.31

1.7

1.8

The JTAG controller provides the following features:

IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO)
Selectable modes of operation include JTAGC/debug or normal system operation.

5-bit instruction register that supports the following IEEE 1149.1-2001 defined
instructions:

- BYPASS

— IDCODE

— EXTEST

- SAMPLE

— SAMPLE/PRELOAD

5-bit instruction register that supports the additional following public instructions:
— ACCESS_AUX_TAP_NPC

— ACCESS_AUX_TAP_ONCE

3 test data registers:

— Bypass register

— Boundary scan register (size parameterized to support a variety of boundary scan
chain lengths)

— Device identification register

TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry

On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features:

Uses external NPN (negative-positive-negative) transistor
Regulates external 3.3 V/5.0 V down to 1.2 V for the core logic
Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V

Developer environment

The following development support is available:

Automotive Evaluation Boards (EVBs) featuring CAN, LIN interfaces, and more
Compilers

Debuggers

JTAG and Nexus interfaces

Autocode generation tools

Initialization tools

Package

In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.

Doc ID 16912 Rev 5 67/936

Introduction RMO0046

SPC560P40/34 family members are offered in the following package types:
® 64-pin LQFP, 0.5 mm pitch, 10 mm x 10 mm outline
® 100-pin LQFP, 0.5 mm pitch, 14 mm x 14 mm outline

68/936 Doc ID 16912 Rev 5 IYI

RMO0046

SPC560P40/34 memory map

2

SPC560P40/34 memory map

Table 3 shows the memory map for the SPC560P40/34. All addresses on the
SPC560P40/34, including those that are reserved, are identified in the table. The addresses
represent the physical addresses assigned to each IP block.

Table 3.

Memory map

Start address | End address (SK'T;) Region name
On-chip memory

0x0000_0000 | 0x0003_FFFF | 256 |Code Flash Array O
0x0004_0000 | Ox001F_FFFF | 1792 |Reserved
0x0020_0000 | 0x0020_3FFF 16 | Code Flash Array 0 Shadow Sector
0x0020_4000 | OxO003F_FFFF | 2032 |Reserved
0x0040_0000 | 0x0040_3FFF 16 Code Flash Array 0 Test Sector
0x0040_4000 | Ox007F_FFFF | 4080 |Reserved
0x0080_0000 | 0x0080_FFFF 64 Data Flash Array 0
0x0081_0000 | 0XxO0CO_1FFF | 4040 |Reserved
0x00C0_2000 | 0Ox00CO_3FFF 8 Data Flash Array 0 Test Sector
0x00C0_4000 | OXxOOFF_FFFF | 4080 |Reserved
0x0100_0000 | Ox1FFF_FFFF | 507904 | Flash Emulation Mapping
0x2000_0000 | Ox3FFF_FFFF | 524288 | Reserved
0x4000_0000 | 0x4000_4FFF 20 |[SRAM
0x4000_5000 | 0xC3F8_0000 1046853 Reserved

On-chip peripherals
0xC3F8_0000 | 0xC3F8_7FFF 32 |Reserved
0xC3F8_8000 | OXC3F8_BFFF | 16 |Code Flash 0 Configuration (CFLASH_0)
O0xC3F8_C000 | OxC3F8_FFFF | 16 |Data Flash 0 Configuration (DFLASH_0)
0xC3F9_0000 | OXC3F9_3FFF | 16 |System Integration Unit Lite (SIUL)
0xC3F9_4000 | 0XC3F9_7FFF 16 | WakeUp Unit (WKUP)
0xC3F9_8000 | 0XC3FD_7FFF | 256 |Reserved
0xC3FD_8000 |0xC3FD_BFFF| 16 |System Status and Configuration Module (SSCM)
0xC3FD_C000 | 0xC3FD_FFFF| 16 |Mode Entry module (ME)
OxC3FE_0000 | OxC3FE_3FFF| 16 |Clock Generation Module (CGM, XOSC, IRC, FMPLL_0, CMUO0)
OxC3FE_4000 | OxC3FE_7FFF| 16 |Reset Generation Module (RGM)
O0xC3FE_8000 |OxC3FE_BFFF| 16 |Power Control Unit (PCU)(")
0xC3FE_CO000 | OxC3FE_FFFF| 16 |Reserved

574

Doc ID 16912 Rev 5

69/936

SPC560P40/34 memory map

RMO0046

Table 3. Memory map (continued)
Start address | End address (SK|zBe) Region name
O0xC3FF_0000 | OxC3FF_3FFF 16 Periodic Interrupt Timer (PIT)
O0xC3FF_4000 | 0xC3FF_FFFF 48 Reserved
OxFFEO_0000 | OxFFEO_3FFF 16 Analog to Digital Converter 0 (ADC_0)
OxFFEO0_4000 | OXFFEO_BFFF 32 | Reserved
OxFFEO_CO000 | OXFFEO_FFFF 16 |CTU_O
OxFFE1_0000 | OXFFE1_7FFF 32 Reserved
OxFFE1_8000 | OxFFE1_BFFF 16 eTimer_0
OxFFE1_CO000 | OxFFE2_3FFF 32 Reserved
OxFFE2_4000 | OXFFE2_7FFF 16 | FlexPWM_0
OxFFE2_8000 | OXFFE3_FFFF 96 |Reserved
OxFFE4_0000 | OXFFE4_3FFF 16 |LINFlex_0
OxFFE4_4000 | OXFFE4_7FFF 16 | LINFlex_1
OxFFE5_0000 | OxFFE6_7FFF | 128 |Reserved
OxFFE6_8000 | OXFFE6_BFFF 16 Cyclic Redundancy Check (CRC)
OxFFE6_CO000 | OXFFE6_FFFF 16 | Fault Collection Unit (FCU)
OxFFE7_0000 | OXFFE7_FFFF 64 |Reserved
OxFFE8_0000 | OXFFEF_FFFF| 512 |Mirrored (range OxC3F8_0000 — 0xC3FF_FFFF)
OxFFFO0_0000 | OXFFF3_7FFF | 224 |Reserved
OxFFF3_8000 | OxFFF3_BFFF 16 | Software Watchdog (SWT_0)
OxFFF3_C000 | OXFFF3_FFFF 16 System Timer Module (STM_O)
OxFFF4_0000 | OxFFF4_3FFF 16 Error Correction Status Module (ECSM)
O0xFFF4_4000 | OxFFF4_7FFF 16 Enhanced Direct Memory Access Controller (€DMA)
O0xFFF4_8000 | OxFFF4_BFFF 16 Interrupt Controller (INTC)
OxFFF4_CO000 | OXFFF8_FFFF | 272 |Reserved
O0xFFF9_0000 | OxFFF9_3FFF 16 |DSPI_0
O0xFFF9_4000 | OxXFFF9_7FFF 16 |DSPI_1
OxFFF9_8000 | OxFFF9_BFFF 16 |DSPI_2
OxFFF9_CO000 | OxFFFB_FFFF | 144 |Reserved
OxFFFC_0000 | OxFFFC_3FFF 16 | FlexCAN_O (CANO)
OxFFFC_4000 |OxFFFD_BFFF| 96 |Reserved
OxFFFD_CO000 | OxFFFD_FFFF 16 | DMA Multiplexer (DMA_MUX)
OxFFFE_0000 | OxFFFE_7FFF 32 Reserved
OxFFFE_8000 | OxFFFE_BFFF 16 | Safety Port (FlexCAN)

70/936

Doc ID 16912 Rev 5

RM0046 SPC560P40/34 memory map
Table 3. Memory map (continued)
Size .
Start address | End address (KB) Region name
OxFFFE_CO000 | OxFFFF_BFFF 64 Reserved
OxFFFF_CO000 | OXFFFF_FFFF 16 Boot Assist Module (BAM)

1. This address space contains also VREG registers. See 34, “Voltage Regulators and Power Supplies.”

Doc ID 16912 Rev 5

71/936

Signal Description

RMO0046

3 Signal Description

This chapter describes the signals of the SPC560P40/34. It includes a table of signal
properties and detailed descriptions of signals.

3.1

100-pin LQFP pinout

Figure 4 and Figure 5 shows the pinout of the 100-pin LQFP.

_LV_COR2

_LV_COR2

<<OON<CIC>>000>>000<<<00Om0m

OO0 0000000000000 000o00nonnn

OOQ)I\(OIOVC'J(\M—OOUUDI\
[>Xe)

OUITNDAT—ODNWONO©

OO 3OO 0> 00 00 0000 00000000 MNMNMNIN

,_

NMI 1 750 Al4]

Al6]d 2 74p VPP_TEST

D[1]d 3 73 b D[14]

Al719 4 72 C[14]

cl41d 5 71p C[13]

Al81d 6 70 p D[12]

cl51d 7 69p N.C.

Al5]d 8 680 N.C.

Cc[71g 9 67 p D[13]

c[3]1d 10 66 p VSS_LV_COR1

N.C. 4 11 65p VDD_LV_COR1

Né” I gg] CI[Z)I]I) HV_I02

VDD_HV_|01 4 13]
VSS_HV_101d 14 LQFP100 62h VSS_HV_102

D91 15 61p TDO
VDD_HV_0SC g 16 60p TCK
VSS_HvV_0SsCc g 17 59p TMS

XTAL 18 58p TDI
EXTAL 4 19 57p A2]
RESET g 20 56 b C[12]

D[8] 4 21 55p C[11]

D[5] 4 22 54 b D[11]

D[6] d 23 53 p D[10]
VSS_LV_CORO0 4 24 52 A[1]
VDD_LV_COR0 g 25 51p A[0]

ONODOT—ANMITIONODNDOT~ANNITODONDODO
ANANNDOONONOMOOITITITTITITTTTTO
| [N S [i §
ErmRENONCODoTNg30neYTO0F£00¢
SWOBONE 2B G5 5E 8 5haE02 b2 2

SNBSS O >
e [y I

[a)
an o
S >

Figure 4.

72/936

Doc ID 16912 Rev 5

100-pin LQFP pinout — Full featured configuration (top view)

RMO0046

Signal Description

D_LV_COR2

]
]

S_LV_COR2

<<COON<ICIC>>000>>000<<<00Om0m
000000000000 00000000000070

OO NOUTONANTTODNONOUTOANT—OD0NO©
QOO DHDHOHOHDM O OO 0000 000000000000 MNMNNN
p=s

NMIH 1 75 A[4]

Al6]1d 2 741 VPP_TEST

D[1]d 3 73 D[14]

Al7]1H 4 72 C[14]

c[4]1d 5 71p C[13]

Al8]d 6 70 p D[12]

c[51g 7 69p N.C.

A5 4 8 681 N.C.

ci719 9 67 p D[13]

ci g 10 66 b VSS_LV_COR1

N.C.d 11 65p VDD_LV_COR1

N.C. 4 12 64 b A[3] o

VDD_HV_I01 4 13 63 p VDD_HV_IO02
VSS_HV_I01d 14 LQFP100 62p VSS_HV_l02

D[9] 4 15 61p TDO
VDD_HV_0SC d 16 60p TCK
VSS_HV_0SC d 17 59p TMS

XTAL O 18 58 TDI
EXTAL 4 19 57h Al2]
RESET g 20 56 p C[12]

D[8] d 21 55p C[11]

D[5] d 22 54h D[11]

D[6] d 23 53 p D[10]
VSS_LV_CORO 24 52k A[1]
VDD_LV_CORO g 25 510 A0]

ONONOTANTLONDODNOT~ANNTOONODO
ANANNDONNONNNNOTITITITITIITITTTITIO
| S [[i §
ErrNNONCORe T NS SEnE YOS
T
SSRmBTR @ 2

T T W I

1 a

[a)d)] Ia)

92 >

Figure 5.

Doc ID 16912 Rev 5

100-pin LQFP pinout — Airbag configuration (top view)

73/936

Signal Description

3.2

64-pin LQFP pinout

e

o 88

88 88

Ela\ §|§|
ey A et iy
CCONICC>>0>>IIC<Cmmm
inlinlninlisisislisislislislislinlslinlnl
/ TOANT—TODONOUTNOA—OD
[(eJ{oj{cN(cNioRToRToNToNToRToNToNToRToRToNTo RS o

NMI 1 48 hA[4]

Al6] 2 47 B VPP_TEST

Al7]d 3 46 hD[14]]

Al8]d 4 45 pD[12]

A[5]1H4 5 44 pD[13
VDD_HV_101d 6 43 pVSS_LV_COR1
VSS_HV_101d 7 42 hVDD_LV_COR1

D[] 8 41 hA[3]

VDD_HV_0Scd 9 LQFP64 40 pVDD_HV_l02
VSS_Hv_0scd 10 39 hVSS_HV_I02
XTALH 11 38 hTDO
EXTALH 12 37 B TCK
RESETO 13 36 fTMS
D[8]] 14 35 h TDI

VSS_LV_COR0{ 15 34 pC[12]
VDD_LV_COR0- 16 33 b Cl11]
FR2RINIINLNILESS
LS8 J Sy [y [[N N [N |
NN ONDo—~NR Lm0
~~~~~~~~ ——~00 0Oy
omomommmaaagg @‘('_)CE‘
>|>| 0>
IlIlLIJ z‘
on a
g2 >

Figure 6.

74/936

Doc ID 16912 Rev 5

64-pin LQFP pinout — Full featured configuration (top view)




RMO0046 Signal Description

s

o 88

8g 88

3|3\ iil
R Y e e bt =)
CCONICIC>>0>>IICmmMMm
imlislinlislisislislisislisislislialslnlsl
/ TOANT—TONONOUOTNOAN—OD
OOV OVOVULLLLLWVWOWLWWLOLW S

NMIH 1 48 h A[4]

Al6] 2 47 b VPP_TEST

A[7]1d 3 46 p D[14]

A[8]d 4 45 hD[12]

A5 5 44 B D[13]
VDD_HV_lO1d 6 43 pVSS_LV_CORH1
VSS_Hv_lo1g 7 ﬁ h VDD_LV_COR1

D[9]d 8 0 A[3]

VDD_HV_0SCH 9 LQFP64 40 b VDD_HV_I02
VSS_Hv_0scd 10 39 B VSS_HV_I02
XTALO 11 38 b TDO
EXTALO 12 37 pTCK
RESETO 13 36 hTMS
D81 14 35 B TDI

VSS_LV_COR0H 15 34 b C[12]
VDD_LV_COR0 16 33 hC[11]

ER2RINIIALRRI8HS

L [ S [y [y [ [ [y Ny

rrr~NONDoO—~NRL om0

~~~~~~~~ 00 <Oy

AUWOMOMWMm _‘E.Eglg‘ Egi

[s2]

ili\ - Z‘

[a))) (=)

g2 >

Figure 7. 64-pin LQFP pinout — Airbag configuration (top view)

3.3 Pin description

The following sections provide signal descriptions and related information about the
functionality and configuration of the SPC560P40/34 devices.

3.3.1 Power supply and reference voltage pins
Table 4 lists the power supply and reference voltage for the SPC560P40/34 devices.

KYI Doc ID 16912 Rev 5 75/936

Signal Description RMO0046

Table 4. Supply pins

Supply Pin
Symbol Description 64-pin | 100-pin
VREG control and power supply pins. Pins available on 64-pin and 100-pin packages
BCTRL Voltage regulator external NPN ballast base control pin 31 47
VDD_HV_REG
(33Vor5.0 V) Voltage regulator supply voltage 32 50
ADC_0 reference and supply voltage. Pins available on 64-pin and 100-pin packages
Vpp_Hv apcol!) | ADC_0 supply and high reference voltage 28 39
Vss_ Hv_ADCO ADC_0 ground and low reference voltage 29 40

Power supply pins (3.3 V or 5.0 V). Pins available on 64-pin and 100-pin packages

Vbb_Hv 101 Input/output supply voltage 6 13
Vss Hv 101 Input/output ground 7 14
Vbb_Hv 102 Input/output supply voltage and data Flash memory supply voltage 40 63
Vss Hv 102 Input/output ground and Flash memory HV ground 39 62
Vbb_Hv_ 103 Input/output supply voltage and code Flash memory supply voltage 55 87
Vss_Hv 103 Input/output ground and code Flash memory HV ground 56 88
Vbp_Hv_0sC Crystal oscillator amplifier supply voltage 9 16
Vss Hv_osc Crystal oscillator amplifier ground 10 17

Power supply pins (1.2 V). Pins available on 64-pin and 100-pin packages

1.2 V supply pins for core logic and PLL. Decoupling capacitor must be

VDD_LV_CORO | connected between these pins and the nearest Vg v cor Pin. 16 25

Vv 1.2 V supply pins for core logic and PLL. Decoupling capacitor must be 15 o4
SS_LV_.COR0 | connected between these pins and the nearest Vpp |y cor Pin.

Y 1.2 V supply pins for core logic and data Flash. Decoupling capacitor must 42 65
DD_LV_CORT | be connected between these pins and the nearest Vss |y _cor Pin.

Vv 1.2 V supply pins for core logic and data Flash. Decoupling capacitor must 43 66
SS_LV_.COR1 | pe connected between these pins and the nearest Vpp v cor Pin.

v 1.2 V supply pins for core logic and code Flash. Decoupling capacitor 58 9
DD_LV_COR2 | must be connected between these pins and the nearest Vg v cor Pin.

v 1.2 V supply pins for core logic and code Flash. Decoupling capacitor 59 93
SS_LV_.COR2 | must be connected betwee.n these pins and the nearest Vpp |y cor pin.

1. Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding
connection on Vpp ny apcx/Vss_Hv_Abcx Pins.
3.3.2 System pins

Table 5 and Table 6 contain information on pin functions for the SPC560P40/34 devices.
The pins listed in Table 5 are single-function pins. The pins shown in Table 6 are multi-
function pins, programmable via their respective pad configuration register (PCR) values.

76/936 Doc ID 16912 Rev 5 KYI

RMO0046 Signal Description

Table 5. System pins

Pad speed(") Pin

Symbol Description Direction
SRC =0 | SRC =1 | 64-pin | 100-pin

Dedicated pins

NMI Non-maskable Interrupt Input only Slow — 1 1

Analog output of the oscillator amplifier
XTAL circuit—needs to be grounded if oscillator is — — — 11 18
used in bypass mode

Analog input of the oscillator amplifier circuit,

EXTAL when th.e oscillator is not in bypass mode . . . 12 19
Analog input for the clock generator when the

oscillator is in bypass mode

TDI JTAG test data input Input only Slow — 35 58

TMS JTAG state machine control Input only Slow — 36 59

TCK JTAG clock Input only Slow — 37 60

TDO JTAG test data output Output only Slow Fast 38 61
Reset pin

Bidirectional reset with Schmitt trigger
characteristics and noise filter

Bidirectional | Medium — 13 20

Test pin

VPP_TEST Pin for t_estlng purpose o_nly. To be tied to . . . 47 74
ground in normal operating mode.

1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

3.33 Pin multiplexing
Table 6 defines the pin list and muxing for the SPC560P40/34 devices.

Each row of Table 6 shows all the possible ways of configuring each pin, via alternate
functions. The default function assigned to each pin after reset is the ALTO function.

SPC560P40/34 devices provide three main I/O pad types, depending on the associated

functions:

® Slow pads are the most common, providing a compromise between transition time and
low electromagnetic emission.

® Medium pads provide fast enough transition for serial communication channels with
controlled current to reduce electromagnetic emission.

® fast pads provide maximum speed. They are used for improved NEXUS debugging
capability.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at

the cost of reducing AC performance. For more information, see “Pad AC Specifications” in

the device datasheet.

KYI Doc ID 16912 Rev 5 77/936

Signal Description

RMO0046

Table 6. Pin muxing
Alternate I/0 Pad speed(® Pin
Port PCT function(): | Functions | Peripheral® | direc-
pin | register @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
Port A (16-bit)
ALTO GPIO[0] SIuL e
ALT1 ETC[O] eTimer_0 110
A[0] | PCR[0] | ALT2 SCK DSPI_2 110 Slow | Medium | — 51
ALT3 F[O] FCU_0 o)
— EIRQ[O] SIuL |
ALTO GPIO[] SIuL 110
ALT1 ETC[] eTimer_0 110
A1] | PCR[1] | ALT2 souT DSPI_2 o) Slow | Medium | — 52
ALT3 F[1] FCU_O o)
— EIRQ[1] SIuL |
ALTO GPIO[2] SIUL 110
ALT1 ETC[2] eTimer_0 110
ALT2 — — —
A2] | PCR[2] | ALT3 Al3] FlexPWM_0 o) Slow | Medium | — 57
— SIN DSPI_2 |
— ABS[0] MC_RGM |
— EIRQ[2] SIuL |
ALTO GPIO[3] SIuL e
ALT1 ETC[3] eTimer_0 /0
ALT2 CS0 DSPI_2 110
A PCR — | Medi 41 64
BI'| PCRBI | p113 B[3] FlexPWM_0 0 Slow edium
— ABS[1] MC_RGM |
— EIRQ[3] SIuL |
ALTO GPIO[4] SIuL 110
ALT1 — — —
ALT2 CSt DSPI_2 o)
- | Medi 4 7
A4l | PORIT | 14 ETC[4] eTimer 0 /0 Slow edium 8 5
— FAB MC_RGM |
— EIRQ[4] SluL |
ALTO GPIO[5] SIuL /0
ALT1 CS0 DSPI_1 110
A[5] | PCR[5] | ALT2 — — — Slow | Medium 5 8
ALT3 cs7 DSPI_0 o)
— EIRQ[5] SIuL |
ALTO GPIO[6] SIuL /0
ALT1 SCK DSPI_1 110
A6] | PCR[6] | ALT2 — — — Slow | Medium 2 2
ALT3 — — —
— EIRQ[6] SIuL
78/936 Doc ID 16912 Rev 5 KYI

RMO0046

Signal Description

Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Pc_;rrIt rePgsTer function(): | Functions | Peripheral® | direc-
P! gl @ tion® [SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[7] SIUL I/0
ALT1 SOuUT DSPI_1 (0]
A[7] | PCR[7] ALT2 — — — Slow | Medium 3 4
ALT3 — — —
— EIRQ[7] SIUL |
ALTO GPIO[8] SIUL /0
ALTH — — —
ALT2 — — — .
A[8] | PCRI8] ALT3 . . . Slow Medium 4 6
— SIN DSPI_1 I
— EIRQ[8] SiuL |
ALTO GPIO[9] SIUL I/0
ALT1 CSHt DSPI_2 (0]
Al9] | PCRI9] ALT2 — — — Slow | Medium 60 94
ALT3 B[3] FlexPWM_0 o)
— FAULT[O] FlexPWM_0O I
ALTO GPIO[10] SIUL /0
ALTH CSo DSPI_2 I/0
A[10] | PCR[10] | ALT2 B[O] FlexPWM_0 o) Slow | Medium 52 81
ALT3 X[2] FlexPWM_0O (0]
— EIRQ[9] sluL |
ALTO GPIO[11] SIUL I/0
ALT1 SCK DSPI_2 110
A[11]| PCR[11] | ALT2 Al0] FlexPWM_0 o) Slow | Medium 53 82
ALT3 Al2] FlexPWM_0 o)
— EIRQ[10] SIUL |
ALTO GPIO[12] SIUL /0
ALTH SOuUT DSPI_2 (0]
A[12] | PCR[12] ALT2 Al2] FlexPWM_0 (0] Slow Medium 54 83
ALT3 B[2] FlexPWM_0 (0]
— EIRQ[11] SIUL |
ALTO GPIO[13] SIUL /0
ALT1 — — —
ALT2 B[2] FlexPWM_0 o)
A[13] | PCR[13] | ALT3 — — — Slow | Medium 61 95
— SIN DSPI_2 I
— FAULT[O] FlexPWM_0 I
— EIRQ[12] SIUL |
'] Doc ID 16912 Rev 5 79/936

Signal Description RMO0046
Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Port PCI;! function(): | Functions | Peripheral® | direc-
pin | register @ tion® [SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[14] SIUL I/0
ALT1 TXD Safety Port_0 (0]
A[14] | PCR[14] | ALT2 — — — Slow | Medium 63 99
ALT3 — — —
— EIRQ[13] SIuL |
ALTO GPIO[15] SIUL /0
ALTH — — —
ALT2 — — — .
A[15] | PCR[15] ALT3 . . . Slow Medium 64 100
— RXD Safety Port_0 |
— EIRQ[14] SIUL |
Port B (16-bit)
ALTO GPIO[16] SIUL I/0
ALT1 TXD FlexCAN_O (0]
B[0] | PCR[16] ALT2 — — — Slow Medium 49 76
ALT3 DEBUG[0] SSCM —
— EIRQ[15] SIUL |
ALTO GPIO[17] SIUL 1/0
ALTH — — —
ALT2 — — —
I Medi 77
B[1] | PCR[17] ALT3 DEBUG[] SSCM . Slow edium 50
— RXD FlexCAN_O I
— EIRQ[16] SIUL |
ALTO GPIO[18] SIUL I/0
ALT1 TXD LIN_O (0]
B[2] | PCR[18] | ALT2 — — — Slow | Medium 51 79
ALT3 DEBUG[2] SSCM —
— EIRQ[17] SIUL |
ALTO GPIO[19] SIUL 1/0
ALTH — — —
B[3] | PCR[19] ALT2 — — — Slow Medium — 80
ALT3 DEBUG[3] SSCM —
— RXD LIN_O I
ALTO GPIO[22] SIUL /0
ALT1 CLKOUT Control (0]
B[6] | PCR[22] | ALT2 Ccs2 DSPI_2 o) Slow | Medium 62 96
ALT3 — — —
— EIRQ[18] SIUL |
80/936 Doc ID 16912 Rev 5 IS7]

RMO0046 Signal Description

Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Pc_;rrIt rePgsTer function(): | Functions | Peripheral® | direc-
P! 9 @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[23] SIUL
ALT1 — —
ALT2 — —
B[7] | PCR[23] ALT3 . . Input only — — 20 29
— AN[O] ADC_0
— RXD LIN_O
ALTO GPI0[24] SIUL
ALTH — —
ALT2 — —
B[8] | PCR[24] ALT3 . . Input only — — 22 31
— AN[1] ADC_0
— ETC[5] eTimer_0
ALTO GPIO[25] SIUL
ALTH — —
B[9] | PCR[25] | ALT2 — — Inputonly | — — 24 35
ALT3 — —
— AN[11] ADC_0
ALTO GPIO[26] SIUL
ALT1 — —
B[10] | PCRI[26] ALT2 — — Input only — — 25 36
ALT3 — —
— AN[12] ADC_0
ALTO GPIO[27] SIUL
ALTH — —
B[11] | PCR[27] ALT2 — — Input only — — 26 37
ALT3 — —
— AN[13] ADC_0
ALTO GPIO[28] SIUL
ALT1 — —
B[12] | PCR[28] ALT2 — — Input only — — 27 38
ALT3 — —
— AN[14] ADC_0
ALTO GPIO[29] SIUL
ALTH — —
ALT2 — —
B[13] | PCR[29] ALT3 — — Input only — — 30 42
— AN[6] ADC_0
— emu. AN[0] | emu. ADC_1(®)
— RXD LIN_1

KYI Doc ID 16912 Rev 5 81/936

Signal Description RMO0046
Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Pc_;rrIt rePgsTer function(): | Functions | Peripheral® | direc-
P! gl @ tion® [SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[30] SIUL
ALT1 — —
ALT2 — —
ALT3 — —
B[14] | PCR[30] _ AN7] ADG. 0 Inputonly | — — — 44
— emu. AN[1] | emu. ADC_1(®)
— ETC[4] eTimer_0
— EIRQ[19] SIUL
ALTO GPIO[31] SIUL
ALT1 — —
ALT2 — —
B[15] | PCR[31] | ALT3 — — Inputonly | — — — 43
— AN[8] ADC_0
— emu. AN[2] | emu. ADC_1(®)
— EIRQ[20] SIUL
Port C (16-bit)
ALTO GPI0[32] SIuL
ALTH — —
ALT2 — —
C[0] | PCR[32] ALT3 . . Input only — — — 45
— AN[9] ADC_0
— emu. AN[3] | emu. ADC_1®
ALTO GPIO[33] SIUL
ALTH — —
C[1] | PCR[33] | ALT2 — — Inputonly | — — 19 28
ALT3 — —
— AN[2] ADC_0
ALTO GPIO[34] SIUL
ALT1 — —
C[2] | PCR[34] ALT2 — — Input only — — 21 30
ALT3 — —
— AN[3] ADC_0
ALTO GPIO[35] SIUL /O
ALTH CSi1 DSPI_0 (0]
C[3] | PCR[35] | ALT2 — — — Slow | Medium — 10
ALT3 TXD LIN_1 (0]
— EIRQ[21] SIUL |
82/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Signal Description

Table 6. Pin muxing (continued)
Alternate I/0 Pad speed® Pin
Pc_;rrIt rePgsTer function('): | Functions | Peripheral® | direc-
P! 9 @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[36] SIUL I/0
ALT1 CSo DSPI_0 I/0
Cl4] | PCR36] | ALT2 X[1] FlexPWM_0 0 Slow | Medium | — 5
ALT3 | DEBUG4] SSCM —
— EIRQ[22] SIuL |
ALTO | GPIO[37] SIUL /0
ALT1 SCK DSPI_0 110
C[5] | PCR[37] ALT2 — — — Slow Medium — 7
ALT3 DEBUG[5] SSCM —
— EIRQ[23] SIuL |
ALTO GPIO[38] SIUL I/0
ALT1 SOuUT DSPI_0 (0]
Cl6] | PCR[38] | ALT2 B[1] FlexPWM_0 0 Slow | Medium | — 98
ALT3 | DEBUGIS] SSCM —
— EIRQ[24] SIuL |
ALTO | GPIO[39] SIUL e
ALT1 — — —
Cl7] | PCR[39]| ALT2 Al1] FlexPWM_0 0 Slow | Medium | — 9
ALT3 DEBUG[7] SSCM —
— SIN DSPI_0 |
ALTO GPIOJ[40] SIUL I/0
ALT1 CSH1 DSPI_1 (0] .
C[8] | PCR[40] ALT2 . o . Slow Medium 57 91
ALT3 CSe6 DSPI_0 (0]
ALTO | GPIO[@41] SIUL 110
ALT1 CS3 DSPI_2 (0] .
clo] | PCR41]| il i N Slow | Medium | — 84
ALT3 X[3] FlexPWM_0 (0]
ALTO | GPIO[42] SIUL /0
ALT1 CSs2 DSPI_2 (0]
C[10] | PCRI[42] ALT2 — — — Slow Medium — 78
ALT3 Al3] FlexPWM_0 0
— FAULT[1] FlexPWM_0 |
ALTO | GPIO[43] SIUL 110
ALTH ETC[4] eTimer_0 110 .
C[11] | PCRI[43] ALT? cso DSPI_2 0 Slow Medium 33 55
ALT3 — — —
ALTO | GPIO[44] SIUL /0
ALT1 ETC[5] eTimer_0 I/0 .
C[12] | PCRJ[44] ALT2 cs3 DSPI 2 0 Slow Medium 34 56
ALT3 — — —
'] Doc ID 16912 Rev 5 83/936

Signal Description RMO0046

Table 6. Pin muxing (continued)

Alternate I/0 Pad speed®) Pin

Port | PCR 14 hetion(: | Functions Peripheral® | direc-

pin | register @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[45] SIUL /0
ALTA — — —
ALT2 — — —
C[13] | PCRI4S] | '\ = B B _ Slow | Medium | — 71
— EXT_IN CTU_ O |
— EXT_SYNC| FlexPWM_0 |
ALTO GPIO[46] SIUL /0
ALTA — — — ,
C[14] | PCRI[46] ALT2 EXT TGR CTU O 0 Slow Medium — 72
ALT3 — — —
ALTO GPIO[47] SIUL e
ALTA — — —
ALT2 — — —
15] | PCR[47 S| Medi — 85
Cl81| PCRI4TH) 11a Al1] FlexPWM_0 0 ow edium
— EXT_IN CTU_ O |
|

— EXT_SYNC| FlexPWM_0
Port D (16-bit)

ALTO GPIO[48] SIUL I/0
ALT1 — — —
D[0] | PCR[48] ALT2 . i . Slow Medium — 86
ALT3 B[1] FlexPWM_0 (0]
ALTO GPIO[49] SIUL I/0
ALT1 — — —
D[1] | PCR[49] ALT2 . . . Slow Medium — 3
ALT3 EXT_TRG CTU_O (0]
ALTO GPIO[50] SIUL I/0
ALT1 — — —
D[2] | PCR[50] ALT2 i . . Slow Medium — 97
ALT3 X[3] FlexPWM_0 (0]
ALTO GPIO[51] SIUL I/0
ALT1 — — —
D[3] | PCR[51] ALT2 i . . Slow Medium — 89
ALT3 A[3] FlexPWM_0 (0]
ALTO GPIO[52] SIUL I/0
ALT1 — — —
D[4] | PCRI[52] ALT2 . . . Slow Medium — 90
ALT3 B[3] FlexPWM_0 (0]
ALTO GPIO[53] SIUL I/0
ALT1 CS3 DSPI_0 (0]
- SI Medi — 22
D[5] | PCRI[53] ALT2 FO] FCU 0 o ow edium
ALT3 — — —

84/936 Doc ID 16912 Rev 5 KYI

RMO0046 Signal Description

Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Port PCT function(): | Functions | Peripheral® | direc-
pin | register @ tion® [SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[54] SIUL I/0
ALT1 CS2 DSPI_0 (0]
Dl6] | PCR54] | ALT2 — — — Slow | Medium | — 23
ALT3 — — —
— FAULT[1] FlexPWM_0 |
ALTO | GPIO[55] SIUL 110
ALT1 CS3 DSPI_1 (0]
- | Medi 17 2
D[7] | PCRI[55] ALT? F[1] FCU 0 0 Slow edium 6
ALT3 CS4 DSPI_0 (0]
ALTO GPIO[56] SIUL I/0
ALT1 CS2 DSPI_1 (0] .
D[8] | PCR[56] ALT2 . . B Slow Medium 14 21
ALT3 CS5 DSPI_0 (0]
ALTO GPIO[57] SIUL I/0
ALT X[0] FlexPWM_0 0 .
| M 1
D[9] | PCRI[57] ALT? TXD LIN. 1 0 Slow edium 8 5
ALT3 — — —
ALTO | GPIO[58] SIUL 110
ALT1 A[O FlexPWM_0 (0]
D[10] | PCR(58] [0] eXFYIVL Slow | Medium | — 53
ALT2 — — —
ALT3 — — —
ALTO GPIO[59] SIUL I/0
ALT1 B[0] FlexPWM_0 (0] .
D[11] | PCR[59] ALT? o . . Slow Medium 54
ALT3 — — —
ALTO GPIO[60] SIUL I/0
ALTA X[1] FlexPWM_0 0
D[12] | PCR[60] | ALT2 — — — Slow | Medium | 45 70
ALT3 — — —
— RXD LIN_1 |
ALTO GPIO[61] SIUL I/0
ALT1 Al FlexPWM
D[13] | PCR61]] exPWM_0 © Slow | Medium | 44 67
ALT2 — — —
ALT3 — — —
ALTO GPIO[62] SIUL I/0
ALT1 B[1 FlexPWM
D[14] | PCR[62]] exPWM_0 © Slow | Medium | 46 73
ALT2 — — —
ALT3 — — —

KYI Doc ID 16912 Rev 5 85/936

Signal Description RM0046
Table 6. Pin muxing (continued)
Alternate I/0 Pad speed® Pin
Pc_;rrIt rePgsTer function('): | Functions | Peripheral® | direc-
P! 9 @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIO[63] SIUL
ALT1 — —
ALT2 — —
D[15] | PCR[63] ALT3 . . Input only — — — 41
— AN[10] ADC_0
— emu. AN[4] | emu. ADC_1()
Port E (16-bit)
ALTO GPI0[65] SIUL
ALTH — —
E[1] | PCR[65] | ALT2 — — Inputonly | — — 18 27
ALT3 — —
— AN[4] ADC_0
ALTO GPIO[66] SIUL
ALT1 — —
E[2] | PCR[66] ALT2 — — Input only — — 23 32
ALT3 — —
— AN[5] ADC_0
ALTO GPI0[67] SIUL
ALTH — —
E[3] | PCR[67] | ALT2 — — Inputonly | — — 30 42
ALT3 — —
— AN[6] ADC_0
ALTO GPIO[68] SIUL
ALT1 — —
E[4] | PCR[68] | ALT2 — — Inputonly | — — — 44
ALT3 — —
— AN[7] ADC_0
ALTO GPI0[69] SIUL
ALTH — —
E[5] | PCR[69] | ALT2 — — Inputonly | — — — 43
ALT3 — —
— AN[8] ADC_0
86/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Signal Description

Table 6. Pin muxing (continued)
Alternate I/0 Pad speed®) Pin
Port rePgsTer function('): | Functions | Peripheral® | direc-
pin | regi @ tion® |SRC=0| SRC=1 | 64-pin |100-pin
ALTO GPIOJ[70] SIUL
ALT1 — —
E[6] | PCR[70] | ALT2 — — Inputonly | — — 45
ALT3 — —
— AN[9] ADC_0
ALTO | GPIO[71] SIUL
ALT1 — —
E[7] | PCR[71] ALT2 — — Input only — — 41
ALT3 — —
— AN[10] ADC_0

1. ALTO is the primary (default) function for each port after reset.

2. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 — ALTO;
PCR.PA =01 > ALT1; PCR.PA =10 —» ALT2; PCR.PA = 11 — ALTS3. This is intended to select the output functions; to
use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA
bitfields. For this reason, the value corresponding to an input only function is reported as “—”.

Module included on the MCU.

Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the

values of the PSMIO.PADSELX bitfields inside the SIUL module.

Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.

ADCO0.AN emulates ADC1.AN. This feature is used to provide software compatibility between SPC560P40/34 and

SPC560P50. Refer to ADC chapter of reference manual for more details.

Doc ID 16912 Rev 5

87/936

Signal Description

RMO0046

3.4 CTU / ADC / FlexPWM / eTimer connections
Figure 8 shows the interconnections between the CTU, ADC, FlexPWM, and eTimer.
External pins
FlexPWM CTU
External pins AAAA
<—|PWMAO Master reload » PWM_REL TRIGGER_0 |—] ADCO
<—|PWMBO OUT_TRIGO_0 » PWM_ODD_0 ADC_CMD_0 |—]|
<— PWMA1 OUT_TRIGO_1 PWM_ODD_1 NEXT_CMD_0 |4
<— PWMBH1 OUT_TRIGO_2 » PWM_ODD_2 FIFO_O |- CTU/ADC
< PWMA2 OUT_TRIGO_3 » PWM_ODD_3 TRIGGER_1—IP Interface| —p!(ipp_ind_injection_trg)
<+— PWMB2 OUT_TRIG1_0 PWM_EVEN_O ADC_CMD_1|—
<— PWMA3 OUT_TRIG1_1 » PWM_EVEN_1 NEXT_CMD_1 {€—
<— PWMB3 OUT_TRIG1_2 »{ PWM_EVEN_2 FIFO_1 ¢
OUT_TRIG1_3 PWM_EVEN_3
FAULTO PWMX0 »{ RPWM_0 ,
':: FAULT1 PWMXA » RPWM_1 External pins
PWMX2 RPWM_2 EXT_IN
PWMX3 P RPWM_3 EXT_TRG
—»——|EXT_SYNC EXT_FORCE |« ETMRO_IN |«
CLOCK — | ETIMERO_TRG
—— ETIMER1_TRG
DSPI eTimer0 AAA External pins
T
T2 >
L AUX_O T3 =<
—p{ AUX_1 T4 >3
SCK P AUX_2 T5 >4
u
Figure 8. CTU/ADC /FlexPWM /eTimer connections
Table 7. CTU / ADC / FlexPWM / eTimer connections
Source module Target module
. . Comment
(Signal) (Signal)

PWM (Master Reload)

CTU (PWM Reload)

From PWM sub-module 0

PWM (OUT_TRIGO_0)

CTU (PWM_ODD_0)

OUT_TRIGO sub-module 0

PWM (OUT_TRIG1_0)

CTU (PWM_EVEN_0)

OUT_TRIG1 sub-module 0

PWM (PWMXO0)

CTU (PWM_REAL_0)

CTU (PWM_ODD_1)

OUT_TRIGO sub-module 1

PWM (OUT_TRIG1_1)

CTU (PWM_EVEN_1)

OUT_TRIG1 sub-module 1

PWM (PWMXT1)

CTU (PWM_REAL_1)

PWM (OUT_TRIGO_2)

CTU (PWM_ODD_2)

OUT_TRIGO sub-module 2

PWM (OUT_TRIG1_2)

CTU (PWM_EVEN_2)

OUT_TRIG1 sub-module 2

(
(
(
(
PWM (OUT_TRIGO_1)
(
(
(
(
(

PWM (PWMX2)

CTU (PWM_REAL_2)

88/936

Doc ID 16912 Rev 5

RMO0046 Signal Description
Table 7. CTU / ADC/ FlexPWM / eTimer connections (continued)
Sourc_e module Targe_t module Comment
(Signal) (Signal)
PWM (OUT_TRIGO_3) [CTU (PWM_ODD_3) |OUT_TRIGO sub-module 3
PWM (OUT_TRIG1_3) |[CTU (PWM_EVEN_3) |OUT_TRIG1 sub-module 3
PWM (PWMX3) CTU (PWM_REAL_3) —
PWM (PWMAO) SIU lite —
PWM (PWMBO) SIU lite —
PWM (PWMX1) SIU lite —
PWM (PWMAT1) SIU lite —
PWM (PWMBH1) SIU lite —
PWM (PWMX2) SIU lite —
PWM (PWMA2) SIU lite —
PWM (PWMB?2) SIU lite —
PWM (PWMX3) SIU lite —
PWM (PWMAB3) SIU lite —
PWM (PWMB3) SIU lite —
PWM (PWMX3) SIU lite —

eTimer_0 (T1)

PWM (EXT_FORCE)

eTimer_0 (T2)

CTU (ETMRO_IN)

eTimer_0 (T5)

ADC_O

ADC injected conversion request signal (for non CTU mode of
operation)

CTU (ETIMERO_TRG)

eTimer_0 (AUX_0)

CTU (ETIMER1_TRG)

eTimer_0 (AUX_1)

CTU (TRIGGER_0)

ADC_0 (through
CTU/ADC IP Interface)

CTU (TRIGGER_1)

Virtual ADC_1 (through
CTU/ADC IP Interface)

CTU (ADC_CMD_0)

ADC_0 (through
CTU/ADC IP Interface)

16-bit signal

CTU (ADC_CMD_1)

Virtual ADC_1 (through
CTU/ADC IP Interface)

16-bit signal

CTU (EXT_TGR)

SIU lite

ADC_0 (EOC)

CTU (NEXT_CMD_0)

End Of Conversion should be used as next command request
signal

Virtual ADC_1 (EOC)

CTU (NEXT_CMD_1)
(through CTU/ADC IP
Interface)

End Of Conversion should be used as next command request
signal

ADC_0

CTU (FIFO_0)

18-bit signal

Virtual ADC_1

CTU (FIFO_1) (through
CTU/ADC IP Interface)

18-bit signal

574

Doc ID 16912 Rev 5

89/936

Signal Description

RMO0046

Table 7. CTU / ADC/ FlexPWM / eTimer connections (continued)
Source module Target module Comment
(Signal) (Signal)

. The same GPIO pin as used for CTU (EXT_IN) and the PWM
SIU lite CTU (EXT_IN) (EXT_SYNC)

. The same GPIO pin as used for CTU (EXT_IN) and the PWM
SIU lite PWM (EXT_SYNC) (EXT_SYNC)
SIU lite PWM (FAULTO) —
SIU lite PWM (FAULT1) —
DSPI_1 (SCK) eTimer_0 (AUX_2) —

90/936 Doc ID 16912 Rev 5 IS7]

RM0046 Clock Description

4 Clock Description

This chapter describes the clock architectural implementation for SPC560P40/34.

The following clock related modules are implemented on the SPC560P40/34:
® Clock, Reset, and Mode Handling

— Clock Generation Module (CGM) (see Chapter 5: Clock Generation Module
(MC_CGM))

— Reset Generation Module (RGM) (see Chapter 8: Reset Generation Module
(MC_RGM))

— Mode Entry Module (ME) (see Chapter 6: Mode Entry Module (MC_ME))
® High Frequency Oscillator (XOSC) (see Section 4.7, “XOSC external crystal oscillator)

® High Frequency RC Oscillator (IRC) (see Section 4.6, “IRC 16 MHz internal RC
oscillator (RC_CTL))

FMPLL (FMPLL_O) (see Section 4.8, “Frequency Modulated Phase Locked Loop
(FMPLL))

CMU (CMU_O0) (see Section 4.9, “Clock Monitor Unit (CMU))
Periodic Interrupt Timer (PIT) (see 30, “Periodic Interrupt Timer (PIT))
System Timer Module (STM_0) (see 31, “System Timer Module (STM))

Software Watchdog Timer (SWT_0) (see Section 27.3, “Software Watchdog Timer
(SWT))

4.1 Clock architecture

The system and peripheral clocks are generated from three sources:
® IRC—internal RC oscillator clock

® XOSC—oscillator clock

® FMPLL_O clock output

The clock architecture is shown in Figure 9, Figure 10, and Figure 11.
The frequencies shown in Figure 9 represent only one possible setting.
Note: MC_PLL_CLK and SP_PLL_CLK are SYS_CLK.

KYI Doc ID 16912 Rev 5 91/936

Clock Description RM0046

RC Oscillator |!RC_CLK IRC_CLK _
(IRC) 16 MHz 16 MHz o
» [0] o
ks
> [2] 8
o PoS FMPLL_0_PCS_CLK > 14 ® SYS_CLK _
Oscillator ‘ FMPLL_0l ™ - FMPLL_0_CLK o § 64 MHZz—50% >
(XOSC40) [T | &4 MH= 5] 2
[}
8 &
XOSC_CLK XOSC_CLK _
8 MHz—50% _ 8 MHz—50% g
> [0] 5
3
> 1] & Clockout
5 +1,+2,+4,+8 30/32 MH —
»|[2] © = z
% Clock Out Divider 50%
o
Bl S
IRC_CLK
= 0] o
XOSC_CLK 2] i;)
FMPLL_0_CLK & — >
[4 %
Y + k] MC_PLL Divider
51 ©
CMU_O0 x
8] <
5
[5]
@
[}
wn
% -
g CMU_PLL Divider
x
2
<C
[0]
S
23
&b
[4] % —
8 SP_PLL Divider
51 S
FMPLL_0_PCS_CLK—64 MHz, 50% . 2
FMPLL_0_CLK—64 MHz, 50% (8]

SYS_CLK = System Clock

NOTE: FlexRay protocol clock does not support IRC as a clock source.

Figure 9. SPC560P40/34 system clock generation

92/936 Doc ID 16912 Rev 5 IYI

RMO0046

Clock Description

SafetyPort
SP_CLK P Module Clock
_XOSC CLK |
P CLK ——m» Protocol Clock
IPS @ SYS_CLK PS @ SPcl > BlU
eTimer_0 7
MC_CLK‘ P Module Clock
IPS @ MC_CLK
P BIU
FlexPWM
MC_CLK P Module Clock
IPS @ MC_CLK > BIU
ADC_O
MC_CLK P Module Clock
IPS @ MC_CLK
> BIU B BE—
DSPI_0
Module Clock
SYS_CLK p BIU
g g
DSPI_1 3l =
SYS_CLK g =
P Module Clock g o
R
> BIU E B
5 o
DSP|_2 &
SYS_CLK P Module Clock
- BIU
CTuU
SYS_CLK P Module Clock -
MC_CLK P Protocol Clock
- BIU
Legend:
DMA Support
NOTE: MC_CLK and SP_CLK are SYS_CLK
Figure 10. SPC560P40/34 system clock distribution Part A
Doc ID 16912 Rev 5 93/936

Clock Description

RMO0046

IPS

SYS_CLK

4.2

4.2.1

94/936

IPS
LINFlex_0 SYS_CLK STM
SYS_CLK » Module clock SYS_CLK Module clock
» BIU BIU
LINFlex_1 ECSM
SYS _CLK » Module clock SYS _CLK Module clock
» BIU BIU
FCU Platform Flash Controller
SYS_CLK N
Module clock SYS_CLK
Module clock |Code Flash Q
IRCOSC_CLK P Protocol clock BIU
» BIU Data Flash 0
DMA Mux SIUL
SYS_CLK » Module clock SYS_CLK Module clock
» BIU BIU
FlexCAN SSCM
SYS_CLK N SYS_CLK
Module clock =
XOSC_CLK Module clock
SYS_CLK Protocol clock \B;\I;:(PU
» BIU SYS_CLK
eDMA2 Module clock
BIU
SYS_CLK » Module clock -
» BIU MC Unit
INTC SYS_CLK Module clock
SYS_CLK » Module clock BIU
» BIU ME
CGM
SWT RGM
PCU
SYS_CLK » Module clock PMU
IRCOSC_CLK »| Protocol clock FMPLL 0
» BIU CQM_0
IRCOSC
XOSC
PIT/RTI
SYS_CLK Module clock
BIU
Figure 11. SPC560P40/34 system clock distribution Part B

Available clock domains

This section describes the various clock domains available on SPC560P40/34.

FMPLL input reference clock

The input reference clock for FMPLL_O is always the external crystal oscillator clock

(XOSC).

Doc ID 16912 Rev 5

RMO0046

Clock Description

4.2.2

4.2.3

4.2.4

425

4.2.6

4.2.7

Clock selectors

System clock selector 0 for SYS_CLK

The system clock selector 0 selects the clock source for the system clock (SYS_CLK) from
clock signals:

® Internal RC oscillator clock (IRC)

® Progressive output clock of FMPLL_0

® Directly from the oscillator clock (XOSC)

Its behavior is configured via software through ME_x_MC register of the ME module.

When the standard boot from internal flash is selected via the boot configuration pins, the
clock source for the system clock (SYS_CLK) after reset (DRUN mode) is the internal RC
oscillator (IRC).

Auxiliary Clock Selector 0

There is no Auxiliary Clock present on SPC560P40/34 device, but to maintain the software
compatibility, corresponding register in MC_CGM (CGM_ACO0_SC) has been implemented
through which user can select any clock source from the given auxiliary clock sources. As

there is no auxiliary clock, all the auxiliary clock sources have been tied to ‘0.

Auxiliary Clock Selector 1

There is no Auxiliary Clock present on SPC560P40/34 device, but to maintain the software
compatibility, corresponding register in MC_CGM (CGM_AC1_SC) has been implemented
through which user can select any clock source from the given auxiliary clock sources. As

there is no auxiliary clock, all the auxiliary clock sources have been tied to ‘0.

Auxiliary Clock Selector 2

There is no Auxiliary Clock present on SPC560P40/34 device, but to maintain the software
compatibility, corresponding register in MC_CGM (CGM_AC2_SC) has been implemented
through which user can select any clock source from the given auxiliary clock sources. As

there is no auxiliary clock, all the auxiliary clock sources have been tied to ‘0’.

Auxiliary clock dividers

As there is no auxiliary clock present on SPC560P40/34, there is no point in having the
auxiliary clock dividers. To maintain the software compatibility, one divider corresponding to
every auxiliary clock has been implemented. Corresponding registers have been
implemented in MC_CGM which can be accessed by user but have no impact in device.
These registers are CGM_AC0_DC0, CGM_AC1_DCO0, and CGM_AC2_DCO0

External clock divider

The output clock divider provides a nominal 50% duty cycle clock and allows the selected
output clock source to be divided with these divide options:

e 1,22 +4,=-8

Doc ID 16912 Rev 5 95/936

Clock Description RM0046

4.3

4.3.1

4.3.2

43.3

4.3.4

96/936

Alternate module clock domains

This section lists the different clock domains for each module. If not otherwise noted, all
modules on the SPC560P40/34 device are clocked on the SYS_CLK.

FlexCAN clock domains

The FlexCAN modules have two distinct software controlled clock domains. One of the clock
domains is always derived from the system clock. This clock domain includes the message
buffer logic. The source for the second clock domain can be either the system clock
(SYS_CLK) or a direct feed from the oscillator pin XOSC_CLK. The logic in the second
clock domain controls the CAN interface pins. The CLK_SRC bit in the FlexCAN CTRL
register selects between the system clock and the oscillator clock as the clock source for the
second domain. Selecting the oscillator as the clock source ensures very low jitter on the
CAN bus. System software can gate both clocks by writing to the MDIS bit in the FlexCAN
MCR. Figure 262 shows the two clock domains in the FlexCAN modules.

Refer to 22, “FlexCAN for more information on the FlexCAN modules.

SWT clock domains

The SWT module has two distinct clock domains. The first clock domain (Module Clock) is
always supplied from the SYS_CLK. This clock domain includes the register interface.

The source for the second clock domain (Protocol Clock) is always the IRC generated by the
internal RC oscillator.
Cross Triggering Unit (CTU) clock domains

The CTU module has two distinct clock domains. The first clock domain (Module Clock) is
supplied from the SYS_CLK. This clock domain includes the Command Buffer logic.

The source for the second clock domain (Protocol Clock) is the MC_PLL_CLK. The logic in
the Protocol Clock domain controls the CTU interface pins to the eTimer module and the
ADC module.

Peripherals behind the IPS bus clock sync bridge

FlexPWM clock domain

The FlexPWM module has only one clock domain. The FlexPWM module is clocked from
the MC_PLL_CLK. Therefore, it is placed behind the IPS bus clock sync bridge.

eTimer_0 clock domain

The eTimer_0 module has only one clock domain. The eTimer_0 module is clocked from the
MC_PLL_CLK. Therefore, it is placed behind the IPS bus clock sync bridge.

ADC_0 clock domain

The ADC_0 module has only one clock domain. The ADC_0 module is clocked from the
MC_PLL_CLK. Therefore, it is placed behind the IPS bus clock sync bridge.

Doc ID 16912 Rev 5 KYI

RMO0046

Clock Description

4.4

4.5

Safety Port clock domains

The Safety Port module has two distinct software-controlled clock domains. The first clock
domain (Module Clock) is always supplied from the SP_PLL_CLK. The source for the
second clock domain (Protocol Clock) can either be the SP_PLL_CLK or the XOSC_CLK.

The user must ensure that the frequency of the first clock domain (Module Clock) clocked
from the MC_PLL_CLK is always the same or greater than the clock selected for the second
clock domain (Protocol Clock).

Clock behavior in STOP and HALT mode

In this section the term “resume” is used to describe the transition from STOP and HALT
mode back to a RUN mode.

The SPC560P40/34 supports the STOP and the HALT modes. These two modes allow to
put the device into a power saving mode with the configuration options defined in the ME
module.

The following constraints are applied on SPC560P40/34 to guarantee that in all modes of
operation a resume from STOP or HALT mode is always possible without the need to reset:
® STOP and HALT mode:

— SIUL clock is not gateable

— SIUL filter for external interrupt capable pins is always clocked with IRC

— Resume via interrupt that can be generated by any peripheral that clock is not
gated

— Resume via NMI pin is always possible if once enabled after reset (no software
configuration that could block resume afterwards)

® STOP mode:
— IRC can NOT be switched off

— The System Clock Selector 0 is switched to the IRC and therefore the SYS_CLK is
feed by the IRC signal

— Resume via external interrupt pin is always possible (if not masked)
® HALT mode:
— The output of the System Clock Selector 0 can only be switched to a running clock
input

— Resume via external interrupt pin is always possible (if not masked) and IRC is not
switched off

System clock functional safety

This section shows the SPC560P40/34 modules used to detect clock failures:

® The Clock Monitoring Unit (CMU_Q0) monitors the clock frequency of the FMPLL_0 and
the XOSC signal against the IRC and provides clock out of range information about the
monitored clock signals.

® FMPLL_O provides a signal that indicates a loss of lock. Each loss of lock signal is sent
to the CGM module.

Doc ID 16912 Rev 5 97/936

Clock Description RM0046

Upon the detection of one of the above mentioned failures, the SPC560P40/34 device either
asserts a reset, generates an interrupt, or sends the device into the SAFE state.

The reaction to each of the clock failures and system parameters (like active clocks and
SYS_CLK clock source) that become active in SAFE state are under software control and
can be configured in the ME module.

4.6 IRC 16 MHz internal RC oscillator (RC_CTL)
The IRC output frequency can be trimmed using RCTRIM bits. After a power-on reset, the
IRC is trimmed using a factory test value stored in test flash memory. However, after a
power-on reset the test flash memory value is not visible at RC_CTL[RCTRIM], and this field
shows a value of zero. Therefore, be aware that the RC_CTL[RCTRIM] field does not reflect
the current trim value until you have written to it. Pay particular attention to this feature when
you initiate a read-modify-write operation on RC_CTL, because a RCTRIM value of zero
may be unintentionally written back and this may alter the IRC frequency. In this case, you
should calibrate the IRC using the CMU.
In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from -32 to 31. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.
Figure 12. RC Control register (RC_CTL)
~ OxC3FE_0060 Access: Supervisor read/write; User read-
Address:
(Base + 0x0000) only
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R| O 0 0 0 0 0 0 0 0
RCTRIM[5:0]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 ‘ 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 8. RC_CTL field descriptions
Field Description

RCTRIM[5:0] |Main RC trimming bits

4.7

98/936

XOSC external crystal oscillator

The external crystal oscillator (XOSC) operates in the range of 4 MHz to 40 MHz. The
XOSC digital interface contains the control and status registers accessible for the external
crystal oscillator.

Doc ID 16912 Rev 5 KYI

RM0046 Clock Description
Main features are:
® Oscillator clock available interrupt
® Oscillator bypass mode
4.7.1 Functional description
The crystal oscillator circuit includes an internal oscillator driver and an external crystal
circuitry. The XOSC provides an output clock to the PLL or it is used as a reference clock to
specific modules depending on system needs.
The crystal oscillator can be controlled by the ME:
® Control by ME module. The OSCON bit of the ME_xxx_MCRSs controls the powerdown
of oscillator based on the current device mode while S_OSC of ME_GS register
provides the oscillator clock available status.
After system reset, the oscillator is put to power down state and software has to switch on
when required. Whenever the crystal oscillator is switched on from off state, OSCCNT
counter starts and when it reaches the value EOCV[7:0] x 512, oscillator clock is made
available to the system. Also an interrupt pending bit _OSC of OSC_CTL register is set. An
interrupt will be generated if the interrupt mask bit M_OSC is set.
The oscillator circuit can be bypassed by setting OSC_CTL[OSCBYP]. This bit can only be
set by the software. System reset is needed to reset this bit. In this bypass mode, the output
clock has the same polarity as external clock applied on EXTAL pin and the oscillator status
is forced to ‘1’. The bypass configuration is independent of the powerdown mode of the
oscillator.
Table 9 shows the truth table of different configurations of oscillator.
Table 9. Crystal oscillator truth table
ENABLE BYP XTALIN EXTAL CK_OSCM XOSC Mode
No crystal, No crystal,
0 0 High Z High Z 0 Power down, IDDQ
X 1 X Ext clock EXTAL Bypass, XOSC disabled
1 0 Crystal Crystal EXTAL Normal, XOSC enabled
4.7.2 Register description
Table 10. OSC_CTL memory map
Offset from
OSC_CTL_BASE Register Access | Reset value Location
(0xC3FE_0000)
0x0000 OSC_CTL—Oscillator control register R/W | 0x0080_0000 | on page 4-99
0x0004—-0x000F | Reserved
1S7 Doc ID 16912 Rev 5 99/936

Clock Description RM0046

Figure 13. Crystal Oscillator Control register (OSC_CTL)

Address: 0xC3FE_0000 Access: Supervisor read/write; User read-
" (Base + 0x0000) only
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
Riosc| O 0 0 0 0 0 0 _
W BYP EOCV[7:0]

Reset 0 0 0 0 0 0 0 0 1 0 0 0 ‘ 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl M_ 0 0 0 0 0 0 0 OS_C 0 0 0 0 0 0 0
0OSC

w wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 11. OSC_CTL field descriptions

Field Description

Crystal Oscillator bypass

This bit specifies whether the oscillator should be bypassed or not. Software can only set this bit.
OSCBYP |System reset is needed to reset this bit.

0: Oscillator output is used as root clock.
1: EXTAL is used as root clock.

End of Count Value

These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state. This counting period
EOCV[7:0] | ensures that external oscillator clock signal is stable before it can be selected by the system. When
oscillator counter reaches the value EOCV[7:0]*512, oscillator available interrupt request is
generated. The reset value of this field depends on the device specification. The OSCCNT counter
will be kept under reset if oscillator bypass mode is selected.

Crystal oscillator clock interrupt mask
M_OSC | 0: Crystal oscillator clock interrupt masked
1: Crystal oscillator clock interrupt enabled

Crystal oscillator clock interrupt

This bit is set by hardware when OSCCNT counter reaches the count value EOCV[7:0]*512. It is
|_OSC |cleared by software by writing 1.

0: No oscillator clock interrupt occurred
1: Oscillator clock interrupt pending

4.8 Frequency Modulated Phase Locked Loop (FMPLL)

4.8.1 Introduction

This section describes the features and functions of the FMPLL module implemented in
SPC560P40/34.

100/936 Doc ID 16912 Rev 5 KYI

RMO0046

Clock Description

4.8.2

Overview

The FMPLL enables the generation of high speed system clocks from a common 4-40 MHz
input clock. Further, the FMPLL supports programmable frequency modulation of the
system clock. The PLL multiplication factor and output clock divider ratio are all software
configurable.

The FMPLL block diagram is shown in Figure 14.

Output

XOSC

\

IDF

»| Division
Factor
Charge (ODF)

\

Y

| —»| BUFFER Pump VCO CRIODF] PHI

Y
Y

4.8.3

4.8.4

Y

DIV2

Low Pass
Filter

Y

A

DIvV4

Y

\i

Loop
Division |<€——
Factor
(LDF)
CRINDIV]

Figure 14. FMPLL block diagram

Features

The FMPLL has the following major features:

Input clock frequency 4-40 MHz
Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

Reduced frequency divider (RFD) for reduced frequency operation without forcing the
FMPLL to relock

Frequency modulated PLL

— Modulation enabled/disabled through software

— Triangle wave modulation

Programmable modulation depth

— +0.25% to +4% deviation from center spread frequency
— —0.5% to +8% deviation from down spread frequency

— Programmable modulation frequency dependent on reference frequency
Self-clocked mode (SCM) operation

4 available modes

— Normal mode

— Progressive clock switching

— Normal Mode with SSCG

— Powerdown mode

Memory map

Table 12 shows the memory map locations. Addresses are given as offsets of the module
base address.

Doc ID 16912 Rev 5 101/936

Clock Description RM0046

Table 12. FMPLL memory map

Offset from
ME_CGM_BASE(" Register Access | Reset value Location
FMPLL_0: 0xC3FE_00A0

0x0000 CR—Control Register R/W 0x0080_0000 | on page 4-102
0x0004 MR—Modulation register R/W 0x0080_0000 | on page 4-104
0x0004—-0x000F Reserved

1. FMPLL_x are mapped through the ME_CGM Register Slot

4.8.5 Register description

The PLL operation is controlled by two registers. Those registers can only be written in
supervisor mode.

Control Register (CR)

Figure 15. Control Register (CR)

Address: Base + 0x0000 Access: Supervisor read/write
" FMPLL_0 = OxC3FE_00AOQ User read-only
0 1 2 3 ‘ 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
Rl O 0 0
W IDF[3:0] ODF[1:0] NDIV[6:0]

Resetoooo\o1o1o1oo\oooo

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
unlock . | pll_fai
R| 0 0 0 0 0 0 0 |en_pll| O “once 0 |i_lock|s_lock pll_fail | flag 1
_sw _mask
w wic wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

102/936 Doc ID 16912 Rev 5 KYI

RM0046 Clock Description

Table 13. CR field descriptions

Field Description

Input Division Factor
The value of this field sets the PLL input division factor.
0000: Divide by 1
0001: Divide by 2
0010: Divide by 3
0011: Divide by 4
0100: Divide by 5
0101: Divide by 6
0110: Divide by 7
0111: Divide by 8
1000: Divide by 9
1001: Divide by 10
1010: Divide by 11
1011: Divide by 12
1100: Divide by 13
1101: Divide by 14
1110: Divide by 15
1111: Clock Inhibit

IDF[3:0]

Output Division Factor

The value of this field sets the PLL output division factor.
00: Divide by 2

01: Divide by 4

10: Divide by 8

11: Divide by 16

ODF[1:0]

Loop Division Factor

The value of this field sets the PLL loop division factor.
0000000-0011111: Reserved

0100000: Divide by 32

0100001: Divide by 33

NDIV[6:

[6:0] 0100010: Divide by 34
1011111: Divide by 95
1100000: Divide by 96
1100001-1111111: Reserved

This bit is used to enable progressive clock switching. After the PLL locks, the PLL output initially
is divided by 8, and then progressively decreases until it reaches divide-by-1.

en_pll_sw Note: The PLL output should not be used if a non-changing clock is needed, such as for serial
communications, until the division has finished.
0: Progressive clock switching disabled

1: Progressive clock switching enabled

This bit is a sticky indication of PLL loss of lock condition. Unlock_once is set when the PLL loses
unlock_once |lock. Whenever the PLL reacquires lock, unlock_once remains set. unlock_once is cleared after a
POR event.

KYI Doc ID 16912 Rev 5 103/936

Clock Description RM0046

Table 13. CR field descriptions (continued)

Field Description
i lock This bit is set by hardware whenever there is a lock/unlock event.lt is cleared by software, writing
- 1.
This bit indicates whether the PLL has acquired lock.
s_lock 0: PLL unlocked
1: PLL locked
This bit masks the pll_fail output.
pll_fail_mask | 0: pll_fail not masked
1: pll_fail masked
. This bit is asynchronously set by hardware whenever a loss of lock event occurs while PLL is
pll_fail_flag . . "
switched on. It is cleared by software, writing 1.

Modulation Register (MR)

Figure 16. Modulation Register (MR)

Access: Supervisor read/write

Address: Base + 0x0004
User read-only
0 1 2 3‘4 5 6 7‘8 9 10 11‘12 13 14 15
R[STRB| o0
_BYPA SPRD MOD_PERIOD
W _SEL
ss
Resetoooo\oooo\oooo\oooo
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
RIFM_
wl EN INC_STEP
Resetoooo\oooo\oooooooo

Table 14. MR field descriptions

Field

Description

STRB_BYPASS

Strobe bypass

The STRB_BYPASS signal bypasses the STRB signal used inside the PLL to latch the correct

values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).

0: STRB latches the PLL modulation control bits.

1: STRB is bypassed. In this case, the control bits need to be static. The control bits must be
changed only when PLL is in power down mode.

SPRD_SEL

Spread type selection
The SPRD_SEL bit selects the spread type in Frequency Modulation mode.

0: Center spread
1: Down spread

104/936

Doc ID 16912 Rev 5 KYI

RMO0046

Clock Description

Table

14.

MR field descriptions (continued)

Field

Description

MOD_PERIOD modperiod= <

Modulation period

The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:

fref

mod
where:

fref: represents the frequency of the feedback divider

fmod: represents the modulation frequency

FM_EN

Frequency modulation enable
The FM_EN bit enables the frequency modulation.

0: Frequency Modulation disabled
1: Frequency Modulation enabled

INC_STEP

Increment step
The INC_STERP field is the binary equivalent of the value incstep derived from following formula:

2"®_1) x md x MDF)

incstep = r0“”0'(100 <5 x MODPERIOD

where:

md: represents the peak modulation depth in percentage

(Center spread — pk-pk = +md, Downspread — pk-pk = —2 x md)

MDF: represents the nominal value of loop divider (NDIV in PLL Control Register).

4.8.6

Functional description

Normal mode

In Normal mode, the PLL inputs are driven by the Control Register (CR). This means that
when the PLL is locked, the PLL output clock (PHI) is derived from the reference clock
(XOSC) through this relationship:

Equation 1

._ xosc - Idf
Phi= oot

where the value of idf (Input Division Factor), Idf (Loop Division Factor), and odf (Output
Division Factor) are set in the CR as shown in Table 13. idf and odf are specified in the IDF
and ODF bitfields, respectively; Idf is specified in the NDIV bitfield.

Progressive clock switching

Progressive clock switching allows to switch system clock to PLL output clock stepping
through different division factors. This means that the current consumption gradually
increases and, in turn, voltage regulator response is improved.

This feature can be enabled by programming bit en_pll_sw in the CR. Then, when the PLL is
selected as the system clock, the output clock progressively increases its frequency as
shown in Table 15.

Doc ID 16912 Rev 5 105/936

Clock Description RM0046

Note:

106/936

Table 15. Progressive clock switching on pll_select rising edge

Number of PLL output clock cycles ck_pll_div frequency (PLL output frequency)
8 (ck_pll_out frequency) + 8
16 (ck_pll_out frequency) + 4
32 (ck_pll_out frequency) + 2
onward (ck_pll_out frequency)

Division factors .
ck_pll_out ———» of 8 4.2, or 1 —» ck_pll_div

Figure 17. Progressive clock switching scheme

Normal Mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency
modulation is enabled, however, two parameters must be set to generate the desired level of
modulation: the PERIOD, and the STEP. The modulation waveform is always a triangle wave
and its shape is not programmable.

Frequency modulation is activated as follows:

1. Configure the FM modulation characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM modulation by programming bit SSCG_EN of the MR to ‘1’. FM
modulated mode can be enabled only when PLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit
STRB_BYPASS in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the PLL only when the
strobe signal goes high. The strobe signal is automatically generated in the FMPLL when
the modulation is enabled (SSCG_EN goes high) if the PLL is locked (s_lock = 1) or when
the modulation has been enabled (SSCG_EN = 1) and PLL enters in lock state (s_lock goes
high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits
(MOD_PERIOD[12:0], INC_STEP[14:0], SPREAD_CONTROL) must be changed only
when the PLL is in power down mode.

The modulation depth in % is

Equation 2

100 x 5 x INCSTEPxMODPERIOD)
2"°-1)x MDF

The user must ensure that the product of INCSTEP and MODPERIOD is less than (21° — 1).

ModulationDepth = (

Doc ID 16912 Rev 5 KYI

RMO0046

Clock Description

The following values show the input setting for one possible configuration of the PLL:
PLL input frequency: 4 MHz

Loop divider (LDF): 64

Input divider (IDF): 1

VCO frequency = 4 MHz x 64 = 256 MHz

PLL output frequency = 256 MHz/ODF

Spread: Center spread (SPREAD_CONTROL = 0)

Modulation frequency = 24 kHz

Modulation depth = +2.0% (4% pk-pk)

Using the formulae for MODPERIOD and INCSTEP:

Equation 3
MODPERIOD = Round [(4e06) / (4 x 24e03)] = Round [41.66] = 42

Equation 4
INCSTEP = Round [((2"® — 1) x 2 x 64) / (100 x 5 x 42)] = Round [199.722] = 200

Equation 5
MODPERIOD x INCSTEP = 42 x 200 = 8400 (which is less than 2'°)

Equation 6
md(quantized)% = ((42*200*100*5) / ((2"15-1)*64) = 2.00278% (peak)

Equation 7
Error in modulation depth = 2.00278 - 2.0 = 0.00278%
If we choose MODPERIOD = 41,

Equation 8
INCSTEP = Round [((21° - 1) x 2 x 64) / (100 x 5 x 41)] = Round [204.878] = 205

Equation 9
MODPERIOD x INCSTEP = 41 x 205 = 8405 (which is less than 21

Equation 10
md(quantized)% = ((41 x 205 x 100 x 5) / ((2'° — 1) x 64) = 2.00397% (peak)

Equation 11
Error in modulation depth = 2.00397 — 2.0 = 0.00397%

The above calculations show that the quantization error in the modulation depth depends on
the flooring and rounding of MODPERIOD and INCSTEP. For this reason, the MODPERIOD
and INCSTEP should be judiciously rounded/floored to minimize the quantization error in
the modulation depth.

Doc ID 16912 Rev 5 107/936

Clock Description RM0046

Frequency
A

1md Center Spread

FO
Imd
FO
2x md Down Spread
f f P Time
Tmod 2Tmod

4.8.7

4.9

4.9.1

108/936

Figure 18. Frequency modulation depth spreads

Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming
the registers ME_x_MC on the ME module.

Recommendations

To avoid any unpredictable behavior of the PLL clock, it is recommended to follow these
guidelines:

The PLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is
required when programming the multiplication and division factors to respect this
requirement.

The user must change the multiplication, division factors only when the PLL output
clock is not selected as system clock. MOD_PERIOD, INC_STEP, SPREAD_SEL bits
should be modified before activating the FM modulated mode. Then strobe has to be
generated to enable the new settings. If STRB_BYP is set to ‘1’ then MOD_PERIOD,
INC_STEP and SPREAD_SEL can be modified only when PLL is in power down mode.

Use progressive clock switching.

Clock Monitor Unit (CMU)

Overview

The Clock Monitor Unit (CMU) serves three purposes:

PLL clock monitoring: detects if PLL leaves an upper or lower frequency boundary

XOSC clock monitoring: monitor the XOSC clock, which must be greater than the
IRCOSC clock divided by a division factor given by CMU_CSR[RCDIV]

Frequency meter: measure the frequency of the IRCOSC clock versus the reference
XOSC clock frequency

Doc ID 16912 Rev 5 KYI

RM0046 Clock Description
When mismatch occurs in the CMU either with the PLL monitor or the XOSC monitor, the
CMU notifies the RGM, ME and the FCU (Fault Collection Unit) modules. The default
behavior is such that a reset occurs and a status bit is set in the RGM. The user also has
the option to change the behavior of the action by disabling the reset and selecting an
alternate action. The alternate action can be either entering safe mode or generating an
interrupt.

Table 16. CMU module summary
Module Monitored clocks
— XOSC integrity supervisor
CMU_O0 — FMPLL_O integrity supervisor
— IRCOSC frequency meter
XOSC valid (on AND stable) / off
cmu_o < Clock
_FMPLL_0 valid (on AND locked) / off Control
IRC_CLK CK 0 (reference) Logic
16 MHz
A A
XOSC_CLK CK XOSC OLR Loss of crystal
4 to 40 MHz
FMPLL_O FMPLL_O freq.
64 MHz CKPLL FLL out of range
Y
FCU -
Figure 19. SPC560P40/34CMU

4.9.2 Main features
® RC oscillator frequency measurement
® External oscillator clock monitoring with respect to CK_IRC/n clock
® PLL clock frequency monitoring with respect to CK_IRC/4 clock
® Event generation for various failures detected inside monitoring unit

Doc ID 16912 Rev 5 109/936

Clock Description RM0046

4.9.3

Note:

110/936

Functional description

The clock and frequency names referenced in this block are defined as follows:
CK_XOSC: clock coming from the external crystal oscillator

CK_IRC: clock coming from the low frequency internal RC oscillator
CK_PLL: clock coming from the PLL

fxosc: frequency of external crystal oscillator clock

fre: frequency of low frequency internal RC oscillator

fpLL: frequency of FMPLL clock

Crystal clock monitor

If fxosc is smaller than fgc divided by 2RCPIV bits of CMU_0_CSR and the CK_XOSC is ‘ON’
and stable as signaled by the ME, then:

® An event pending bit OLRI in CMU_O_ISR is set

® Afailure event OLR is signaled to the RGM and FCU, which in turn can generate either
an interrupt, a reset, or a SAFE mode request.

PLL clock monitor

The PLL clock CK_PLL frequency can be monitored by programming bit CME_O of the
CMU_O0_CSR to “1’. The CK_PLL monitor starts as soon as bit CME_OQ is set. This monitor
can be disabled at any time by writing bit CME_0 to ‘0.

If the CK_PLL frequency (fp |) is greater than a reference value determined by bits
HFREF[11:0] of the CMU_HFREFR and the CK_PLL is ‘ON’ and the PLL locked as signaled
by the ME then:

® An event pending bit FHHI_O in the CMU_O0_ISR is set.

® Afailure event FHH is signaled to the RGM and FCU, which in turn can generate either
an interrupt, a reset, or a SAFE mode request.

If fp L is less than a reference clock frequency (frc/4) and the CK_PLL is ‘ON’ and the PLL

locked as signaled by the ME, then:

® An event pending bit FLCI_0 in the CMU_O_ISR is set.

® A failure event FLC is signaled to the RGM and FCU, which in turn can generate either
an interrupt, a reset, or a SAFE mode request.

If fp L is less than a reference value determined by bits LFREF[11:0] of the CMU_LFREFR

and the CK_PLL is ‘ON’ and the PLL locked as signaled by the ME, then:

® An event pending bit FLLI_0 in the CMU_O_ISR is set.

® A failure event FLL is signaled to the RGM and FCU, which in turn can generate either
an interrupt, a reset, or a SAFE mode request.

It is possible for either the XOSC or PLL monitors to produce a false event when the XOSC
or PLL frequency is too close to RC/2FCP!V frequency due to an accuracy limitation of the
compare circuitry.

System clock monitor

The system clock is monitored by CMU_1. The Fgys ¢k frequency can be monitored by
programming CMU_1_CSR[CME] = 1. SYS_CLK monitoring starts as soon as
CMU_1_CSR[CME] = 1. This monitor can be disabled at any time by writing CME bit to 0.

Doc ID 16912 Rev 5 KYI

RMO0046

Clock Description

If Fsys cLk is greater than a reference value determined by the
CMU_1_HFREFR_A[HFREF_A] bits and the system clock is enabled, then:

® CMU_1_ISR[FHHI] is set

® A failure event is signaled to the MC_RGM and FCU, which in turn can generate a
‘functional’ reset, a SAFE mode request, or an interrupt

If Fsys cLk is less than a reference clock frequency (Figcosc cLk+4) and the system clock

is enabled, then:

® CMU_1_ISR[FLCI]is set

® A failure event FLC is signaled to the MC_RGM and Fault Collection Unit, which in turn
can generate a ‘functional' reset, a SAFE mode request, or an interrupt

If Fsys cLk is less than a reference value determined by the

CMU_1_LFREFR_A[LFREF_A] bits and the system clock is enabled, then:
® CMU_1_ISR[FLLI] is set

® A failure event is signaled to the MC_RGM and FCU, which in turn can generate a
‘functional’ reset, a SAFE mode request, or an interrupt

Note: The system clock monitor ma cproduce a false event when Fgyg ¢k Is less than
2xFipcosc cLx/2CMU-1-CSRIRCDIVI que to an accuracy limitation of the compare circuitry.
Frequency meter
The frequency meter calibrates the internal RC oscillator (CK_IRC) using a known
frequency.

Note: This value can then be stored into the flash so that application software can reuse it later on.
The reference clock will be always the XOSC. A simple frequency meter returns a draft
value of CK_IRC. The measure starts when bit SFM (Start Frequency Measure) in the
CMU_CSR is set to ‘1. The measurement duration is given by the CMU_MDR in numbers
of IRC clock cycles with a width of 20 bits. Bit SFM is reset to ‘0’ by hardware once the
frequency measurement is done and the count is loaded in the CMU_FDR. The frequency
frc can be derived from the value loaded in the CMU_FDR as follows:

Equation 12
frc = (fosc x MD) /' n
where nis the value in the CMU_FDR and MD is the value in the CMU_MDR.

4.9.4 Memory map and register description
Table 17 shows the memory map of the CMU.

Table 17. CMU memory map

Offset from
CMU_BASE Register Access | Reset value Location
(0xC3FE_0100)
0x0000 Control Status Register (CMU_0_CSR) R/W | 0x0000_0006 | on page 4-112
0x0004 Frequency Display Register (CMU_0_FDISP) R 0x0000_0000 | on page 4-113
0x0008 High Frequency Reference Register FMPLL_0O RW | 0x0000_OFFF | on page 4-113

(CMU_O_HFREFR_A)

574

Doc ID 16912 Rev 5 111/936

Clock Description RM0046
Table 17. CMU memory map (continued)
Offset from
CMU_BASE Register Access | Reset value Location
(0xC3FE_0100)
Low Frequency Reference Register FMPLL_0O i
0x000C (CMU_0_LFREFR_A) R/W | 0x0000_0000 | on page 4-114
0x0010 Interrupt Status Register (CMU_O0_ISR) R/W | 0x0000_0000 | on page 4-114
0x0014 Reserved
0x0018 Measurement Duration Register (CMU_0_MDR) ‘ R/W ‘ 0x0000_0000 | on page 4-115

0x001C—0x3FFF

Reserved

Control Status Register (CMU_0_CSR)

Figure 20. Control Status Register (CMU_0_CSR)
Address: Base + 0x0000

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SFM
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0
RCDIV[1:0] CME
w _0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 18. CMU_O0_CSR field descriptions
Field Description
Start frequency measure
The software can only set this bit to start a clock frequency measure. It is reset by hardware when the
SFM measure is ready in the CMU_FDR.
0: Frequency measurement completed or not yet started
1: Frequency measurement not completed
RC clock division factor
These bits specify the RC clock division factor. The output clock is CK_IRC divided by the factor
2RCDIV_ This output clock is compared with CK_XOSC for crystal clock monitor feature.The clock
RCDIV[1:0] d|v.|3|on codlln'g is as foIIows.' B
00: Clock divided by 1 (no division)
01: Clock divided by 2
10: Clock divided by 4
11: Clock divided by 8
FMPLL_O clock monitor enable
CME_O0 |0. FMPLL_O monitor disabled
1. FMPLL_O monitor enabled
112/936 Doc ID 16912 Rev 5 1S

RMO0046

Clock Description

Frequency Display Register (CMU_0_FDR)

Figure 21. Frequency Display Register (CMU_0_FDR)
Address: Base + 0x0004 Access: User read-only
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 FD[19:16]
w [[|
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R FD[15:0]
wle [[[[]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 19. CMU_O_FDR field descriptions
Field Description
Measured frequency bits
FD[19:0] | This register displays the measured frequency frc with respect to fogc. The measured value is given
by the following formula: fgc = (fosc x MD) / n, where n is the value in CMU_FDR.
High Frequency Reference Register FMPLL_0 (CMU_O0_HFREFR_A)
Figure 22. High Frequency Reference register FMPLL_0 (CMU_0_HFREFR_A)

Address: Base + 0x0008

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R| O 0 0 0
HFREF[11:0]
w
Reset 0 0 O 0 | 1 1 1 1] 1 1 1 1] 1 1 1 1
Table 20. CMU_O0_HFREFR_A field descriptions
Field Description
High Frequency reference value
HFREF_A

These bits determine the high reference value for the FMPLL_O clock. The reference value is given
by: (HFREF_A[11:0]/16) x (frc/4).

Doc ID 16912 Rev 5

113/936

Clock Description

RMO0046

Low Frequency Reference Register FMPLL_0 (CMU_O0_LFREFR_A)

Figure 23. Low Frequency Reference Register FMPLL_0 (CMU_0_LFREFR_A)

Address: Base + 0x000C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
Rl 0 0 0 0
LFREF[11:0]
W
Reset 0 0 O ©0 0O O O O/ 0 O 0 O/ 0 O 0 O
Table 21. CMU_O0_LFREFR_A fields descriptions
Field Description
Low Frequency reference value
LFREF_A | These bits determine the low reference value for the FMPLL_0. The reference value is given by:
(LFREF_A[11:0)/16) * (frc/4).
Interrupt Status Register (CMU_0_ISR)
Figure 24. Interrupt Status Register (CMU_0_ISR)
Address: Base + 0x0010 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RRro|o|o oo lo|o|o o oo o FCHFHAIFLG R
0| 0| 0
w wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 22. CMU_O0_ISR field descriptions
Field Description
FMPLL_O Clock frequency less than reference clock interrupt
This bit is set by hardware when CK_FMPLL_O0 frequency becomes lower than reference clock
FLCI 0 frequency (frc/4) value and CK_FMPLL_0 is ‘ON’ and the PLL locked as signaled by the ME. It can
- be cleared by software by writing 1.
0: No FLC event
1: FLC event pending
114/936 Doc ID 16912 Rev 5 1S

RM0046 Clock Description
Table 22. CMU_O_ISR field descriptions (continued)
Field Description
FMPLL_O0 Clock frequency higher than high reference interrupt
This bit is set by hardware when CK_FMPLL_ 0 frequency becomes higher than HFREF_A value and
CK_FMPLL_O0 is ‘ON’ and the PLL locked as signaled by the ME. It can be cleared by software by
FHHI_O o
writing 1.
0: No FHH event
1: FHH event pending
FMPLL_0 Clock frequency less than low reference event
This bit is set by hardware when CK_FMPLL_O0 frequency becomes lower than LFREF_A value and
CK_FMPLL_O0 is ‘ON’ and the PLL locked as signaled by the ME. It can be cleared by software by
FLLI_O y
writing 1.
0: No FLL event
1: FLL event pending
Oscillator frequency less than RC frequency event
This bit is set by hardware when the frequency of CK_XOSC is less than CK_IRC/2RPV frequency
OLRI and CK_XOSC is ‘ON’ and stable as signaled by the ME. It can be cleared by software by writing 1.
0: No OLR event
1: OLR event pending
Measurement Duration Register (CMU_0_MDR)
Figure 25. Measurement Duration Register (CMU_0_MDR)
Address: Base + 0x0018 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| 0 0 0 0 0 0 0 0 0 0 0 0
MD[19:16]
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R
MDI[15:0]
W
Reset 0 0 O0 o0[0 o o0 0|0 o0 o0 0[O0 o0 o0 O
Table 23. CMU_0_MDR field descriptions
Field Description
Measurement duration bits
MD[19:0] | This register displays the measured duration in term of IRC clock cycles. This value is loaded in the
frequency meter downcounter. When SFM bit is set to ‘1’, downcounter starts counting.

Doc ID 16912 Rev 5 115/936

Clock Generation Module (MC_CGM) RM0046

5 Clock Generation Module (MC_CGM)

5.1 Overview

The clock generation module (MC_CGM) generates reference clocks for all the SoC blocks.
The MC_CGM selects one of the system clock sources to supply the system clock. The
MC_ME controls the system clock selection (see the MC_ME chapter for more details).
Peripheral clock selection is controlled by MC_CGM control registers. A set of MC_CGM
registers controls the clock dividers which are used for divided system and peripheral clock
generation. The memory spaces of system and peripheral clock sources which have
addressable memory spaces are accessed through the MC_CGM memory space. The
MC_CGM also selects and generates an output clock.

Figure 26 depicts the MC_CGM Block Diagram.

116/936 Doc ID 16912 Rev 5 KYI

RM0046 Clock Generation Module (MC_CGM)
MC_CGM
16 MHZz_IRC | p»
g¢—p| MC_ME
XOSCo | .
Registers
Platform Interface MC_RGM
PLLO I
System Clock .
Multiplexer/Divider | pp[Peripherals
Aucxiliary Clock
Selector/Divider ——[X] PAD[22]
<§—P core
Output Clock
Selector/Divider
< » mapped
peripherals

Figure 26. MC_CGM Block Diagram

Mapped Modules Interface

Doc ID 16912 Rev 5

117/936

Clock Generation Module (MC_CGM)

RMO0046

5.2 Features
The MC_CGM includes the following features:
® generates system and peripheral clocks
® selects and enables/disables the system clock supply from system clock sources
according to MC_ME control
® contains a set of registers to control clock dividers for divided clock generation
® contains a set of registers to control peripheral clock selection
® supports multiple clock sources and maps their address spaces to its memory map
® generates an output clock
® guarantees glitch-less clock transitions when changing the system clock selection
® supports 8, 16 and 32-bit wide read/write accesses
5.3 External Signal Description
The MC_CGM delivers an output clock to the PAD[22] pin for off-chip use and/or
observation.
54 Memory Map and Register Definition
Table 24. MC_CGM Register Description
Access
Address Name Description Size Location
User | Supervisor Test
0xC3FE . .
0370 CGM_OC_EN Output Clock Enable word | read | read/write | read/write | on page 5-124
O0xC3FE Output Clock Division . .
0374 CGM_OCDS_SC Select byte | read | read/write | read/write | on page 5-124
0xC3FE System Clock Select
0378 CGM_SC_SS Status byte | read read read on page 5-125
0xC3FE System Clock Divider . .
037C CGM_SC_DCo0 Configuration 0 byte | read | read/write | read/write | on page 5-126
0xC3FE Aux Clock 0 Select . .
0380 CGM_ACO0_SC Control word | read | read/write | read/write | on page 5-127
0xC3FE Aux Clock 0 Divider . .
0384 CGM_AC0_DCo Configuration 0 byte | read | read/write | read/write | on page 5-128
0xC3FE Aux Clock 1 Select . .
0388 CGM_AC1_SC Control word | read | read/write | read/write | on page 5-128
0xC3FE Aux Clock 1 Divider . .
038C CGM_AC1_DCO Configuration 0 byte | read | read/write | read/write | on page 5-129
0xC3FE Aux Clock 2 Select . .
0390 CGM_AC2_SC Control word | read | read/write | read/write | on page 5-130
0xC3FE Aux Clock 2 Divider . .
0394 CGM_AC2_DCo Configuration 0 byte | read | read/write | read/write | on page 5-131
118/936 Doc ID 16912 Rev 5 1S

RMO0046

Clock Generation Module (MC_CGM)

Note:

Table 25.

Any access to unused registers as well as write accesses to read-only registers will not
change register content, and cause a transfer error.

MC_CGM Memory Map

Address

o| 1| 2|3)| 4|5 |6 | 7| 8|9 |10|11|12]|13]| 14| 15
Name

16 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

0xC3FE
_0000

0xC3FE
_001C

XOSC registers

O0xC3FE
_0020
0xC3FE
_003C

reserved

0xC3FE
_0040

O0xC3FE
_005C

reserved

0xC3FE
_0060

0xC3FE
_007C

IRCOSC registers

0xC3FE
_0080

0xC3FE
_009C

reserved

0xC3FE
_00A0

0xC3FE
_00BC

PLLO registers

0xC3FE
_00Co

0xC3FE
_ooDC

reserved

O0xC3FE
_00EO
0xC3FE
_00FC

reserved

574

Doc ID 16912 Rev 5 119/936

Clock Generation Module (MC_CGM)

RMO0046

Table 25.

MC_CGM Memory Map (continued)

Address

Name

0

1

2

3

4 5 6 7

10

1

12

13

14

15

16

17

18

19

20 | 21 22 | 23

24

25

26

27

28

29

30

31

0xC3FE
_0100

0xC3FE
_011C

CMUO registers

O0xC3FE
_0120
0xC3FE
_013C

reserved

0xC3FE
_0140

O0xC3FE
_015C

reserved

0xC3FE
_0160

0xC3FE
_017C

reserved

0xC3FE
_0180

0xC3FE
_019C

reserved

0xC3FE
_01A0

0xC3FE
_01BC

reserved

0xC3FE
_01Co

0xC3FE
_01DC

reserved

O0xC3FE
_01EO

0xC3FE
_01FC

reserved

O0xC3FE
_0200
O0xC3FE
_021C

reserved

120/936

Doc ID 16912 Rev 5

RM0046 Clock Generation Module (MC_CGM)

Table 25. MC_CGM Memory Map (continued)

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Address Name

16 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

0xC3FE
_0220
. reserved
0xC3FE
_023C

O0xC3FE
_0240

.. reserved
0xC3FE
_025C

0xC3FE
_0260

.. reserved
0xC3FD
_C27C

0xC3FE
_0280

.. reserved
0xC3FE
_029C

0xC3FE
_02A0

... reserved
0xC3FE
_02BC

0xC3FE
_02Co0

.. reserved
0xC3FE
_02DC

0xC3FE
_02EO0

.. reserved
0xC3FE
_02FC

O0xC3FE
_0300

.. reserved
0xC3FE
_031C

O0xC3FE
_0320

.. reserved
O0xC3FE
_033C

KYI Doc ID 16912 Rev 5 121/936

Clock Generation Module (MC_CGM) RM0046

Table 25. MC_CGM Memory Map (continued)

Address Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
OxC3FE
0340
reserved
OxC3FE
_035C
OxC3FE
_0360
reserved
OxC3FE
_036C
o|lo|lo|o|o|o|lo|]o|o|o|o|]OoO|O|O]|]O]|oO
OXC3FE | oM oc_EN
_0370 olo|lo|lo|lo|lo|lo|o|lo|oOo|OoO|O|]O]|]O]oO
EN
0] o0 ololo|lo|o|o|lo]|oO
SELDIV SELCTL
0xC3FE |CGM_OCDS_
_0374 |SC o|lo|lo|lo|lo|lo|lo|lo|o|o|lo|o|o|o]O]|oO
olo|o]|o SELSTAT ololo|lo|lo|lo|o]oO
OXC3FE | sam sc_ss
_0378 olo|lo|lo|lo|lo|o|o|o|o|oOo|]oO|O|]O]|]O]|oO

o/ 0] 0O o(o0jojo|ojojoy|o
g DIVO
0xC3FE |CGM_SC_DC
_037C |0 o,0jojo,0}jo0fojojo|jo0jo0ojo0ojojoy|o0jo
0O(0]|]0]O0 o(o0|jojo|fojojoy|o0
SELCTL

0xC3FE | CGM_ACO_S
_0380 |C

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

0xC3FE |CGM_ACO0_D
_0384 |CO

DEO
9
<
S

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

E:UE\mémémémé‘mémémé:ﬂémémém

122/936 Doc ID 16912 Rev 5 ‘il

RM0046 Clock Generation Module (MC_CGM)

Table 25. MC_CGM Memory Map (continued)

Address Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rlo|lo|o]|o ololo|lo|o|o|lo]|oO
SELCTL
0xC3FE |CGM_AC1_S |W
_0388 |C Rlo|lo|o|lo|o|o|lo|o|]o|O|oO|oOo|O|O]O]|oO
w
R o|lo|o o|lolo|lo|o|]o|lo]|oO
OXC3FE [CGM_AC1 D |R| o DIVO
_038C |CO wl o
Rlo|lo|o|lo|o|]o|lo|o|o|o|o|o|Oo|o]o]|oO
W
Rlo|o|o|oO o|lolo|lo|o|]o|loOo]oO
SELCTL
0xC3FE |CGM_Ac2_s |W
0390 |C Rlolo|o|o|o|o|o|oO|O|O|O|O|O|O|O|O
w
R olo|o ololo|lo|o|o|lo]oO
OXC3FE [CGM_AC2 D |R| o DIVO
_0394 |CO wl o
Rlo|lo|o|lo|o|]o|lo|o|o|O|oO|Oo|O|O]oO]|oO
w
O0XC3FE
0398
reserved
OxC3FE
_3FFC
5.5 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the CGM_OC_EN register may be
accessed as a word at address 0xC3FE_0370, as a half-word at address OxC3FE_0372, or
as a byte at address 0xC3FE_0373.

KYI Doc ID 16912 Rev 5 123/936

Clock Generation Module (MC_CGM) RM0046

5.5.1 Output Clock Enable Register (CGM_OC_EN)
Figure 27. Output Clock Enable Register (CGM_OC_EN)

Address OxC3FE_0370 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register is used to enable and disable the output clock.

Table 26. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

Output Clock Enable control
EN 0 Output Clock is disabled
1 Output Clock is enabled

5.5.2 Output Clock Division Select Register (CGM_OCDS_SC)
Figure 28. Output Clock Division Select Register (CGM_OCDS_SC)

Address OxC3FE_0374 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0
W SELDIV SELCTL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register is used to select the current output clock source and by which factor it is
divided before being delivered at the output clock.

124/936 Doc ID 16912 Rev 5 KYI

RM0046 Clock Generation Module (MC_CGM)

Table 27. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

Output Clock Division Select

00 output selected Output Clock without division
SELDIV |01 output selected Output Clock divided by 2

10 output selected Output Clock divided by 4

11 output selected Output Clock divided by 8

Output Clock Source Selection Control — This value selects the current source for the output clock.

0000 16 MHz int. RC osc.
0001 4 MHz crystal osc.
0010 system PLL

0011 reserved

0100 reserved

0101 reserved

0110 reserved
SELCTL {0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 reserved

5.5.3 System Clock Select Status Register (CGM_SC_SS)
Figure 29. System Clock Select Status Register (CGM_SC_SS)

Address OxC3FE_0378 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 SELSTAT 0 0 0 0 0 0 0 0
w 1]

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the current system clock source selection.

KYI Doc ID 16912 Rev 5 125/936

Clock Generation Module (MC_CGM) RM0046

Table 28. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field Description

System Clock Source Selection Status — This value indicates the current source for the system
clock.

0000 16 MHz int. RC osc.
0001 reserved

0010 4 MHz crystal osc.
0011 reserved

0100 system PLL

0101 reserved
SELSTAT 0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 system clock is disabled

5.5.4 System Clock Divider Configuration Register (CGM_SC_DCO0)

Figure 30. System Clock Divider Configuration Register (CGM_SC_DCO0)

Address OxC3FE_037C Access: User read, Supervisor read/write, Test read/write
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0
W DEO DIVO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register controls the system clock divider.

Table 29. System Clock Divider Configuration Register (CGM_SC_DCO0) Field Descriptions

Field Description

Divider 0 Enable

DEO |0 Disable system clock divider 0
1 Enable system clock divider O

Divider 0 Division Value — The resultant divided system clock 0 will have a period DIVO + 1 times that
DIVO |of the system clock. If the DEO is set to ‘0’ (Divider 0 is disabled), any write access to the DIVO field is
ignored and the divided system clock 0 remains disabled.

126/936 Doc ID 16912 Rev 5 KYI

RM0046 Clock Generation Module (MC_CGM)
5.5.5 Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC)
Figure 31. Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC)
Address 0xC3FE_0380 Access: User read, Supervisor read/write, Test read/write
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl 0O 0 0 0 0 0 0 0
SELCTL
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register is used to select the current clock source for the following clocks:
® undivided: (unused)
o divided by auxiliary clock 0 divider 0: (unused)
See Figure 40 for detalils.
Table 30. Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC) Field Descriptions
Field Description
Auxiliary Clock 0 Source Selection Control — This value selects the current source for auxiliary clock
0.
0000 (no clock)
0001 reserved
0010 (no clock)
0011 reserved
0100 (no clock)
0101 (no clock)
SELCTL 0110 reserved
0111 reserved
1000 (no clock)
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Doc ID 16912 Rev 5

127/936

Clock Generation Module (MC_CGM)

RMO0046

5.5.6

Figure 32. Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0)

Address OxC3FE_0384

Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0)

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0
DEO DIVO
w
Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register controls the auxiliary clock O divider.
Table 31. Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0) Field Descriptions
Field Description
Divider 0 Enable
DEO |0 Disable auxiliary clock 0 divider 0
1 Enable auxiliary clock O divider 0
Divider 0 Division Value — The resultant (unused) will have a period DIVO + 1 times that of auxiliary
DIVO |clock 0. If the DEO is set to O (Divider 0 is disabled), any write access to the DIVO field is ignored and the
(unused) remains disabled.
5.5.7 Auxiliary Clock 1 Select Control Register (CGM_AC1_SC)
Figure 33. Auxiliary Clock 1 Select Control Register (CGM_AC1_SC)
Address OxC3FE_0388 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0
SELCTL
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register is used to select the current clock source for the following clocks:
® undivided: (unused)
o divided by auxiliary clock 1 divider 0: (unused)
128/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Clock Generation Module (MC_CGM)

Table 32.

Auxiliary Clock 1 Select Control Register (CGM_AC1_SC) Field Descriptions

Field

Description

1.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

SELCTL

(no clock)

reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

Auxiliary Clock 1 Source Selection Control — This value selects the current source for auxiliary clock

5.5.8

Figure 34. Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0)
Address OxC3FE_038C

Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0)

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0
W DEO DIVO
Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register controls the auxiliary clock 1 divider.

Table 33. Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0) Field Descriptions
Field Description
Divider 0 Enable
DEO |0 Disable auxiliary clock 1 divider 0
1 Enable auxiliary clock 1 divider O
Divider 0 Division Value — The resultant (unused) will have a period DIVO + 1 times that of auxiliary
DIVO |clock 1. If the DEO is set to O (Divider 0 is disabled), any write access to the DIVO field is ignored and the
(unused) remains disabled.
1S7 Doc ID 16912 Rev 5 129/936

Clock Generation Module (MC_CGM)

RMO0046

5.5.9

Auxiliary Clock 2 Select Control Register (CGM_AC2_SC)
Figure 35. Auxiliary Clock 2 Select Control Register (CGM_AC2_SC)

Address 0xC3FE_0390

2

5

Access: User read, Supervisor read/write, Test read/write

6 7 8

9

10

11

12

13

14

15

SELCTL

0

0

0

0

0

0

20

0

21

0 0 0

22 23 24

25

26

27

28

29

30

31

0

0

0 0 0

Table 34.

This register is used to select the current clock source for the following clocks:
undivided: (unused)

See Figure 38 for detalils.

0

0

0

0

0 0 0

0

divided by auxiliary clock 2 divider O: (unused)

0

0

0

0

Auxiliary Clock 2 Select Control Register (CGM_AC2_SC) Field Descriptions

Field

Description

SELCTL

Auxiliary Clock 2 Source Selection Control — This value selects the current source for auxiliary clock

2.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(no clock)
reserved
(no clock)
reserved
(no clock)
(no clock)
reserved
reserved
(no clock)
reserved
reserved
reserved
reserved
reserved
reserved
reserved

130/936

Doc ID 16912 Rev 5

RMO0046

Clock Generation Module (MC_CGM)

5.5.10

Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0)

Figure 36. Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0)

Address OxC3FE_0394

0

1

2

w

Access: User read, Supervisor read/write, Test read/write

7

8

9

10

11

12

13

R 0 0 0 0 0 0 0 0 0 0 0
DEO DIVO
w
Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register controls the auxiliary clock 2 divider.
Table 35. Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0) Field Descriptions
Field Description
Divider 0 Enable
DEO |0 Disable auxiliary clock 2 divider 0
1 Enable auxiliary clock 2 divider 0
Divider 0 Division Value — The resultant (unused) will have a period DIVO + 1 times that of auxiliary
DIVO |clock 2. If the DEO is set to O (Divider 0 is disabled), any write access to the DIVO field is ignored and the
(unused) remains disabled.
5.6 Functional Description
5.7 System Clock Generation

Figure 37 shows the block diagram of the system clock generation logic. The MC_ME
provides the system clock select and switch mask (see MC_ME chapter for more details),
and the MC_RGM provides the safe clock request (see MC_RGM chapter for more details).
The safe clock request forces the selector to select the 16 MHz int. RC osc. as the system

clock and to ignore the system clock select.

Doc ID 16912 Rev 5

131/936

Clock Generation Module (MC_CGM) RM0046

16 MHz int. RC osc.

4 MHz crystal osc.

MC_RGM SAFE mode request

ME_<current mode> —»p

system clock is disabled if
0 ME_<current mode>_MC.SYSCLK = “1111”

o o
707
— 7§ » system clock

system PLL

CGM_SC_DCO Register

——» divided system clock O

A

clock divider

“0000” — 1'\

_MC.SYSCLK

CGM_SC_SS Register

5.7.1

5.7.2

5.7.3

5.8

132/936

Figure 37. MC_CGM System Clock Generation Overview

System Clock Source Selection

During normal operation, the system clock selection is controlled
® on a SAFE mode or reset event, by the MC_RGM
® otherwise, by the MC_ME

System Clock Disable
During the TEST mode, the system clock can be disabled by the MC_ME.

System Clock Dividers

The MC_CGM generates the divided system clock 0 - controlled by the CGM_SC_DCO0
register.

Auxiliary Clock Generation

Figure 38 shows the block diagram of the auxiliary clock generation logic. See

Section 5.5.5, “Auxiliary Clock 0 Select Control Register (CGM_ACO0_SC), Section 5.5.7,
“Auxiliary Clock 1 Select Control Register (CGM_AC1_SC), and Section 5.5.9, “Auxiliary
Clock 2 Select Control Register (CGM_AC2_SC) for auxiliary clock selection control.

Doc ID 16912 Rev 5 KYI

RMO0046

Clock Generation Module (MC_CGM)

» (unused)

(no clock) 0
(no clock) 2
(no clock) 4
(no clock) 5
(no clock) 8

CGM_ACO0_DCO Register

CGM_ACO_SC Register

h 4

clock divider

L » (unused)

Figure 38. MC_CGM Auxiliary Clock 0 Generation Overview

(no clock)

» (unused)

/k

CGM_AC1_DCO Register

CGM_AC1_SC Register

A 4

clock divider

L » (unused)

Figure 39. MC_CGM Auxiliary Clock 1 Generation Overview

Doc ID 16912 Rev 5

133/936

Clock Generation Module (MC_CGM) RM0046

(no clock) 0
(no clock) 2
(no clock) 4
(noclock) — |5

(no clock) » (unused)

CGM_AC2_DCO Register

y

clock divider ~ —» (unused)

A 4

CGM_AC2_SC Register

5.8.1

5.8.2

5.9

134/936

Figure 40. MC_CGM Auxiliary Clock 2 Generation Overview

Auxiliary Clock Source Selection

During normal operation, the auxiliary clock selection is done via the CGM_ACO0...2_SC
registers. If software selects an ‘unavailable’ source, the old selection remains, and the
register content does not change.

Auxiliary Clock Dividers

The MC_CGM generates the following derived clocks:

® (unused) - controlled by the CGM_ACO0_DCO register
® (unused) - controlled by the CGM_AC1_DCO register
® (unused) - controlled by the CGM_AC2_DCO register

Dividers Functional Description

Dividers are used for the generation of divided system and peripheral clocks. The MC_CGM
has the following control registers for built-in dividers:

® Section 5.5.4, “System Clock Divider Configuration Register (CGM_SC_DCO0)

® Section 5.5.6, “Auxiliary Clock 0 Divider Configuration Register (CGM_ACO0_DCO0)
® Section 5.5.8, “Auxiliary Clock 1 Divider Configuration Register (CGM_AC1_DCO0)
® Section 5.5.10, “Auxiliary Clock 2 Divider Configuration Register (CGM_AC2_DCO0)

The reset value of all counters is ‘1°. If a divider has its DE bit in the respective configuration
register set to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

Doc ID 16912 Rev 5 KYI

RM0046 Clock Generation Module (MC_CGM)

5.10 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can
then be used as output clock sources. The selection is done via the CGM_OCDS_SC
register.

5.11 Output Clock Division Selection

16 MHz int. RCosc. — |0 med h—
4 MHz crystal osc. 1
system PLL 2
reserved 3 L - - -
CGM_OC_EN Register
| |
3 l
5 0
. M PAD[22]
0
LA
LA
CGM_OCDS_SC.SELDIV | |
Register

Figure 41. MC_CGM Output Clock Multiplexer and PAD[22] Generation

The MC_CGM provides the following output signals for the output clock generation:

® PAD[22] (see Figure 41). This signal is generated by using one of the 3-stage ripple
counter outputs or the selected signal without division. The non-divided signal is not
guaranteed to be 50% duty cycle by the MC_CGM.

the MC_CGM also has an output clock enable register (see Section 5.5.1, “Output Clock
Enable Register (CGM_OC_EN)) which contains the output clock enable/disable control bit.

KYI Doc ID 16912 Rev 5 135/936

Mode Entry Module (MC_ME) RM0046

6 Mode Entry Module (MC_ME)
6.1 Introduction
6.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states.
It also contains configuration, control and status registers accessible for the application.

Figure 42 depicts the MC_ME Block Diagram.

136/936 Doc ID 16912 Rev 5 KYI

RM0046 Mode Entry Module (MC_ME)

MC_ME
VREG P .

Flashes .
Registers

Platform Interface

<@—Pp| MC_RGM

16 MHz_IRC |<q—p

XOSCo -] <g—p| MC_CGM
PLLO |—p]
<§—P| core
Device
Mode
State
Machine
<@——pp-| Peripherals

@—— WKPU

Figure 42. MC_ME Block Diagram

KYI Doc ID 16912 Rev 5 137/936

Mode Entry Module (MC_ME) RM0046
6.1.2 Features
The MC_ME includes the following features:
® control of the available modes by the ME_ME register
® definition of various device mode configurations by the ME_<mode>_MC registers
e control of the actual device mode by the ME_MCTL register
® capture of the current mode and various resource status within the contents of the
ME_GS register
® optional generation of various mode transition interrupts
@ status bits for each cause of invalid mode transitions
® peripheral clock gating control based on the ME_RUN_PCO...7, ME_LP_PCO0...7, and
ME_PCTLO...143 registers
® capture of current peripheral clock gated/enabled status
6.1.3 Modes of Operation
The MC_ME is based on several device modes corresponding to different usage models of
the device. Each mode is configurable and can define a policy for energy and processing
power management to fit particular system requirements. An application can easily switch
from one mode to another depending on the current needs of the system. The operating
modes controlled by the MC_ME are divided into system and user modes. The system
modes are modes such as RESET, DRUN, SAFE, and TEST. These modes aim to ease the
configuration and monitoring of the system. The user modes are modes such as RUNO...3,
HALTO, and STOPO which can be configured to meet the application requirements in terms
of energy management and available processing power. The modes DRUN, SAFE, TEST,
and RUNO...3 are the device software running modes.
Table 36 describes the MC_ME modes.
Table 36. MC_ME Mode Descriptions

Name Description Entry Exit
This is a chip-wide virtual mode during which the system reset system reset
application is not active. The system remains in this mode |assertion from deassertion from
until all resources are available for the embedded software | MC_RGM MC_RGM

RESET :
to take control of the device. It manages hardware
initialization of chip configuration, voltage regulators, clock
sources, and flash modules.

This is the entry mode for the embedded software. It system reset system reset
provides full accessibility to the system and enables the deassertion from | assertion,

DRUN configuration of the system at startup. It provides the MC_RGM, RUNO...3, TEST
unique gate to enter user modes. BAM when present is software request | via software, SAFE
executed in DRUN mode. from SAFE, TEST |via software or

and RUNO...3 hardware failure.
This is a chip-wide service mode which may be entered on | hardware failure, | system reset

SAFE the detection of a recoverable error. It forces the system software request assertion, DRUN
into a pre-defined safe configuration from which the system |from DRUN, TEST, | via software
may try to recover. and RUNO...3
This is a chip-wide service mode which is intended to software request | system reset

TEST provide a control environment for device software teting. from DRUN assertion, DRUN

via software
138/936 Doc ID 16912 Rev 5 IS7]

RM0046 Mode Entry Module (MC_ME)
Table 36. MC_ME Mode Descriptions (continued)

Name Description Entry Exit
These are software running modes where most processing | software request | system reset
activity is done. These various run modes allow to enable |from DRUN or assertion, SAFE
different clock & power configurations of the system with other RUNO...3, via software or

RUNO.. 3 respect to each other. interrupt event hardware failure,
from HALTO, other RUNO...3
interrupt or wakeup | modes, HALTO,
event from STOPO | STOPO via
software
This is a reduced-activity low-power mode during which the |software request | system reset
clock to the core is disabled. It can be configured to switch |from RUNO...3 assertion, SAFE

HALTO off analog peripherals like clock sources, flash, main on hardware
regulator, etc. for efficient power management at the cost of failure, RUNO...3
higher wakeup latency. on interrupt event
This is an advanced low-power mode during which the software request | system reset
clock to the core is disabled. It may be configured to switch |from RUNO...3 assertion, SAFE

STOPO off most of the peripherals including clock sources for on hardware
efficient power management at the cost of higher wakeup failure, RUNO...3
latency. on interrupt event

or wakeup event
6.2 External Signal Description
The MC_ME has no connections to any external pins.
6.3 Memory Map and Register Definition
The MC_ME contains registers for:
® mode selection and status reporting
® mode configuration
® mode transition interrupts status and mask control
® scalable number of peripheral sub-mode selection and status reporting
6.3.1 Memory Map
Table 37. MC_ME Register Description
Access
Address Name Description Size Location
User | Supervisor Test
Oxggg(l;) ME_GS Global Status word | read read read on page 6-147
Oxgggf ME_MCTL Mode Control word | read read/write | read/write | on page 6-149
Oxgggg ME_ME Mode Enable word | read read/write | read/write | on page 6-150

574

Doc ID 16912 Rev 5

139/936

Mode Entry Module (MC_ME) RM0046
Table 37. MC_ME Register Description (continued)
Access
Address Name Description Size Location
User | Supervisor Test

O_ng’gg ME_IS Interrupt Status word | read read/write |read/write | on page 6-152
Ofgg’::(? ME_IM Interrupt Mask word | read read/write | read/write | on page 6-153
Ofgg::f ME_IMTS Qﬁﬂg Mode Transition |word| read read/write | read/write on page 6-154
Oi(ggilaj ME_DMTS gte;ltt)t:g Mode Transition |word| read read read on page 6-155
Ofgg’;? ME_RESET_MC ggrilizzrl\;t(i)g: word | read read read on page 6-158
Oi(gggf ME_TEST_MC -Crzlcz)ﬁlji—gtﬂrz(tjiin word | read read/write | read/write | on page 6-158
Ofgg’;g ME_SAFE_MC gﬁr':flizgquZ?ign word | read read/write | read/write | on page 6-159
(f(g (§32FCD ME_DRUN_MC (Dic?r::‘gul\fz;?:n word | read read/write | read/write | on page 6-160
Oi(gggoD ME_RUNO_MC ggm%nggn word | read read/write | read/write | on page 6-161
Ofggg f ME_RUN1_MC ggr'::gnggn word | read read/write | read/write | on page 6-161
O_nggg ME_RUN2_MC ggmémgggn word | read read/write | read/write | on page 6-161
O_Xg ggg ME_RUN3_MC ggm%nggn word | read read/write | read/write | on page 6-161
Ofgg’:(l)) ME_HALTO_MC ggrl;;li—gu,\r/gic(j)i word | read read/write | read/write | on page 6-161
O_ng:g ME_STOPO_MC gg(;z?]gggﬁ word | read read/write | read/write | on page 6-162
Oi(gggoD ME_PS0 Peripheral Status 0 word | read read read on page 6-164
Oi(gg’gf ME_PS1 Peripheral Status 1 word | read read read on page 6-164
O_nggg ME_PS2 Peripheral Status 2 word | read read read on page 6-165
O_ngg(? ME_RUN_PCO gng;irrig;];:aé word | read read/write | read/write | on page 6-166
Oi(ccg’gf ME_RUN_PC1 gng;irrisgg:a: word | read read/write | read/write | on page 6-166
140/936 Doc ID 16912 Rev 5 Ky_l

RM0046 Mode Entry Module (MC_ME)
Table 37. MC_ME Register Description (continued)
Access
Address Name Description Size Location
User | Supervisor Test
0xC3FD Run Peripheral . .
C09C ME_RUN_PC7 Configuration 7 word | read read/write |read/write | on page 6-166
0xC3FD Low-Power Peripheral . .
" COAO ME_LP_PCO Configuration 0 word | read read/write | read/write | on page 6-167
0xC3FD Low-Power Peripheral . .
COA4 ME_LP_PCA1 Configuration 1 word | read read/write | read/write | on page 6-167
0xC3FD Low-Power Peripheral . .
_COBC ME_LP_PC7 Configuration 7 word | read read/write | read/write | on page 6-167
Oxgggf ME_PCTL4 DSPI_0 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .
CoC5 ME_PCTL5 DSPI_1 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

COC6 ME_PCTL6 DSPI_2 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

CoDO ME_PCTL16 FlexCAN_O Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

CODA ME_PCTL26 SafetyPort Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

COEO ME_PCTL32 ADC_0 Control byte | read read/write | read/write | on page 6-167
Oxgg’ll;? ME_PCTL35 CTU Control byte | read read/write |read/write | on page 6-167
0xC3FD . . .

COE6 ME_PCTL38 eTimer_0 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

COE9 ME_PCTL41 FlexPWM_0 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

COFO ME_PCTL48 LIN_FLEX_0 Control byte | read read/write | read/write | on page 6-167
0xC3FD . .

COF1 ME_PCTL49 LIN_FLEX_1 Control byte | read read/write | read/write | on page 6-167
Oxg 131Fé3 ME_PCTL92 PIT Control byte | read read/write |read/write | on page 6-167

Note: Any access to unused registers as well as write accesses to read-only registers will not

change register content, and cause a transfer error.

Doc ID 16912 Rev 5

141/936

Mode Entry Module (MC_ME) RM0046
Table 38. MC_ME Memory Map
Address Name 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 | 21 |22 (23 | 24 | 25 | 26 27 28 29 30 31
2
< Q T
mg(:)sg(l)) ME_GS R|S_CURRENT_MODE |Z | 1|0 |0 2|0 |0 |3 | s.DFLA | S CFLA
_ §| UJl U)l
wn
w
(@)
ol 8 s
=1
Rlo|lo|o|o|o|o|O|O]|oO 0—9 g S_SYSCLK
» o 59|
N
w
R o|lo|lo|lo|o|o|lo|]O]|]O]| O] O] O
m TARGET_MODE
OXC3FD | \1e vicTL
_C004 R1|o|1|oo1o1oooo1111
w KEY
Rl o|lo|o|o|o|lo|o|o|lo|OoO|o|lO|oO|oO]|OF]oOQO
0xC3FD ME_ME
_Co008 W
o |z |w 0
Roooooﬁogggggggacﬁ
9 =|3(35|5 o =) n Ll o
b T ||| ==
Rlo|lo|o|o|o|lo|o|o|lo|OoO|Oo|loO|O|O|]OI]oOQO
(il}
Vo00c | ME1S Zl5|k|g
_ R0000000000009§(<,E)|§|
L N T (R B
W wic | wic | wic|wic
Rlo|lo|o|o|o|lo|o|o|lo|O|Oo|lO|O|O|]OI]oOQO
w
0xC3FD
“coto |ME-IM RI0O]0]0]0]0j0jOfO0j0|0]|0]| 0 % & w]|og
O | O < =
Q|2 | g | =
W | _| §| §
s | s
Rl o|lo|o|o|o|lo|o|o|lo|OoO|Oo|lO|oO|O]|OY]oOQO
OXSS:? ME_IMTS el |||
_Co Rl ojofojojojojojofo|lo|0|= |3 |8 |Z |5
ol |gl|l ol on
w wilc | wic | wic |wic|wic
142/936 Doc ID 16912 Rev 5 IYI

RM0046 Mode Entry Module (MC_ME)

Table 38. MC_ME Memory Map (continued)

Address Name 0 1 2 3 |4 |5 |6 |7 |89 /|10 1 12 | 13 | 14 | 15
16 | 17 | 18 | 19 |20 |21 |22 (23 (24 [25 |26 | 27 | 28 | 29 | 30 | 31
> O] (O]
[42] o m
) o @] o
R| PREVIOUS_MODE [0 |0 |0 |0 |®|o|o0o | |, | 0| o0]|S
T o | n
3 = @]
= o O
W
) 0 ™ -
0xC3FD ME_DMTS 8 8 O 3 3 S =
_Cco18 | P o299) v | o | o
880w|w|w|w|ol 1S I
s
Rl o |88 |5 |8|5|d|a|a|olojo|o|a|a|d
| Y eS| | o |F
o | o S22 |7 Id | > a | o |
w2 |o »lo|o | a | o | o
[ass N «9 Ia) =) =) [m)
> (@] O O O (@]
W
OxC3FD reserved
_Co1C
o 5
R| O 0 0 0 o|0|0O0]|O E 0|0 n>: DFLAON | CFLAON
=
w | |
0xC3FD | ME_RESET_ &
_C020 |MC z| 8| Q
o|s| &
R| O 0 0 0 0j0j0|0]|0|Gg|O| SYSCLK
0 8 T
o > s
©
w | |
z
(@)
R| O 0 0 0 0/]0|0|0|p|0|0]|
o = DFLAON | CFLAON
o =
R| O 0 0 0 ojojo0|jO0]|O %
Z| O
Z 10 F
O|a| &
SEESEEN SYSCLK
w O 8 T
o < s
©

KYI Doc ID 16912 Rev 5 143/936

Mode Entry Module (MC_ME) RM0046

Table 38. MC_ME Memory Map (continued)

0 1 2 3 4 5 6 7 8 9 [10

-
u—ry

12 13 14 15

Address Name
16 17 18 19 20 (21 | 22 (23 | 24 | 25 | 26 27 28 29 30 31
5
Rlo|lo|o|0|0|l0|[0O|O|pg|O|O| & |DFLAON | CFLAON
a >
o =
w | |
0xC3FD | ME_SAFE_M 3
_Cco28 |C z|&|Q
o|s| &
Rlolo|o|o|o|o|o|lo|o|3|O| SYSCLK
- 8 T
o < s
[(e}
w | |
=z
Rlolo|o|olololo|lo|8]o]o]|@
0xC3FD | ME_DRUN_M
— — o >
" 0026 | ¢ Z | DFLAON | CFLAON
w
=z
3
z|&|
Rlo|o|o]|ol]o|o|o|o|O|&|8]
S|o| SYSCLK
O 8 b=
a|Q ©
w
0xC3FD o Z
€030 e mruno. 3| R| O |00]o0]ojojlojojalofo|d
ve o < | DFLAON | CFLAON
OXC3FD |~
_Co3C w
=z
o)
z | 2
Rlo|o|o|o|ojolo|lo|lo|B|8]|
S|o| SYSCLK
O 8 P
a|Q ©
w
=z
Rlolo|o|olololo|o|l8]o]o]|g
0xC3FD | ME_HALTO
— - o >
" Cos0 | MC Z | DFLAON | CFLAON

SYSCLK

PLLOON
XOSCOON
16 MHz_IRCON

144/936 Doc ID 16912 Rev 5 IYI

RM0046 Mode Entry Module (MC_ME)
Table 38. MC_ME Memory Map (continued)
Address Name 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 | 21 | 22 (23 | 24 | 25 | 26 27 28 29 30 31
0xC3FD reserved
_C044
5
0xC3FD |ME_STOPO 010101 0/0/0]0)0/0|0]0)&
— - >
“Coss |MC a Z | DFLAON | CFLAON
=
3
§lz| &
olo|o|o|o|lo|lo|o|0o|3|8| SYSCLK
| O T
o | w S
2| e
0xC3FD
_co4ac
reserved
0xC3FD
_C05C
T S,
[e]
=
g <
o|lo|o|o|o|&|o|o|lo|o|Oo|O|O]|oO]|oO]|ZSQ
8 g
wn U)l
0xC3FD
" 0060 ME_PS0
N9
olo|o|o|olololo|lo|&|&|&|o|o|lo]o
D| D| D|
n|ln wn
RN
> >
L L
— |
olofo|ofojofoflo|o|O|O|O]|O]|oO|&]|WK
Z | Z2
_II _II
n wn
0xC3FD
" Coss | ME_PST —
EI O| o
S g P o
o|o|o|ojojojxjojolElolo|o|0|0]Q
f ®| c/)l <|
| [9p] »
wn
KYI Doc ID 16912 Rev 5 145/936

Mode Entry Module (MC_ME)

RM0046

Table 38. MC_ME Memory Map (continued)
Address Name 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 | 21 | 22 (23 | 24 | 25 | 26 27 28 29 30 31
=
Rlo|o|o0|&|oflofO|O0|O|lOfO|O | O O] O]O
wn
O0XC3FD
w
" C068 ME_PS2
Rlo|lo|o|o|o|o|o|lo|o|O|lO|O| O] O/|O]oO
W
OxC3FD reserved
_C06C
OxC3FD reserved
_C070
OxC3FD
_CO074
reserved
O0XC3FD
_co7C
olo|lo|o|o|lo|o|lo|o|O|lO|O|O]|OY|O]oO
0XC3FD
080 ME_RUN_PC —
oxcarp |07 Rlojofo|ojojojojo0l2|ly|z|g | |w| |9
cosc 22|22 |5 |3 |® =
W
0xC3FD Rlo|lo|o|o|o|o|OoO|lO|O|O|O|O| O] O/|O]oO
~COAD | vie 1p pco |W
oxC3FD |7 Rooooogogoooooooo
0XC3FD Rl O] 0|5
Xcoco o LP_CFG RUN_CFG o LP_CFG RUN_CFG
- ME_PcTLO... | W a a
oxcarD | 143 R 0 | Y 0|
10} LP_CFG RUN_CFG o LP_CFG RUN_CFG
_C14C W m m
[m) [m)
0XC3FD
_C150
reserved
OXC3FD
_FFFC
6.3.2 Register Description

146/936

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the ME_RUN_PCO
register may be accessed as a word at address 0xC3FD_CO080, as a half-word at address

0xC3FD_CO082, or as a byte at address 0xC3FD_C083.

Doc ID 16912 Rev 5

574

RM0046 Mode Entry Module (MC_ME)

Global Status Register (ME_GS)

Figure 43. Global Status Register (ME_GS)

Address 0xC3FD_C000 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[%)
< g z

R| S_CURRENT_MODE ,“_: 1 0 0 o 0 0 = S_DFLA S_CFLA
§| o o
%)

w

Reset 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1

16 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 20 30 3
9
° o o
382
R| O 0 0 0 0 0 0 0 0 o Q % S_SYSCLK
® o ,“3|
%)
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

This register contains global mode status.

Table 39. Global Status Register (ME_GS) Field Descriptions

Field Description

Current device mode status
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUNO
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALTO
1001 reserved
1010 STOPO
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

S_CURRENT
_MODE

Mode transition status

S_MTRANS |0 Mode transition process is not active
1 Mode transition is ongoing

KYI Doc ID 16912 Rev 5 147/936

Mode Entry Module (MC_ME) RM0046

Table 39. Global Status Register (ME_GS) Field Descriptions (continued)

Field

Description

S_PDO

Output power-down status — This bit specifies output power-down status of 1/Os. This bit is
asserted whenever outputs of pads are forced to high impedance state or the pads power
sequence driver is switched off.

0 No automatic safe gating of I/Os used and pads power sequence driver is enabled

1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and the pads power
sequence driver is disabled. The inputs are level unchanged. In STOPO mode, only the pad
power sequence driver is disabled, but the state of the output remains functional.

S_MVR

Main voltage regulator status

0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA

Data flash availability status

00 Data flash is not available

01 Data flash is in power-down mode

10 Data flash is not available

11 Data flash is in normal mode and available for use

S_CFLA

Code flash availability status

00 Code flash is not available

01 Code flash is in power-down mode

10 Code flash is in low-power mode

11 Code flash is in normal mode and available for use

S_PLLO

system PLL status

0 system PLL is not stable
1 system PLL is providing a stable clock

S_XOSCo

4 MHz crystal oscillator status

0 4 MHz crystal oscillator is not stable
1 4 MHz crystal oscillator is providing a stable clock

S_16 MHz_IRC

16 MHz internal RC oscillator status

0 16 MHz internal RC oscillator is not stable
1 16 MHz internal RC oscillator is providing a stable clock

S_SYSCLK

System clock switch status — These bits specify the system clock currently used by the
system.

0000 16 MHz int. RC osc.
0001 reserved

0010 4 MHz crystal osc.
0011 reserved

0100 system PLL

0101 reserved

0110 reserved

0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 system clock is disabled

148/936

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Mode Control Register (ME_MCTL)

Figure 44. Mode Control Register (ME_MCTL)

Address OxC3FD_C004

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 5 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0
TARGET_MODE
W
Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
W KEY
Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

This register is used to trigger software-controlled mode changes. Depending on the modes
as enabled by ME_ME register bits, configurations corresponding to unavailable modes are
reserved and access to ME_<mode>_MC registers must respect this for successful mode

requests.
Note:

Doc ID 16912 Rev 5

Byte and half-word write accesses are not allowed for this register as a predefined key is
required to change its value.

149/936

Mode Entry Module (MC_ME) RM0046

Table 40. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

Target device mode — These bits provide the target device mode to be entered by software
programming. The mechanism to enter into any mode by software requires the write operation
twice: first time with key, and second time with inverted key. These bits are automatically
updated by hardware while entering SAFE on hardware request. Also, while exiting from the
HALTO and STOPO modes on hardware exit events, these are updated with the appropriate
RUNO...3 mode value.

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUNO
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALTO
1001 reserved
1010 STOPO
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

TARGET_MODE

Control key — These bits enable write access to this register. Any write access to the register
with a value different from the keys is ignored. Read access will always return inverted key.
KEY:0101101011110000 (0x5AFO0)
INVERTED KEY:1010010100001111 (OxA50F)

KEY

Mode Enable Register (ME_ME)

Figure 45. Mode Enable Register (ME_ME)

Address 0xC3FD_C008 Access: User read, Supervisor read/write, Test read/write
1 3 5 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|_
Aflolololololelolelelal=|2|53|8.|4
% H Z z z 2 g =)]
= = - =)) I o
0 T o o o [==
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

This register allows a way to disable the device modes which are not required for a given
device. RESET, SAFE, DRUN, and RUNO modes are always enabled.

150/936 Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Table 41.

Mode Enable Register (ME_ME) Field Descriptions

Field

Description

STOPO

STOPO mode enable

0 STOPO mode is disabled
1 STOPO mode is enabled

HALTO

HALTO mode enable

0 HALTO mode is disabled
1 HALTO mode is enabled

RUN3

RUN3 mode enable

0 RUNS3 mode is disabled
1 RUN3 mode is enabled

RUN2

RUN2 mode enable

0 RUN2 mode is disabled
1 RUNZ2 mode is enabled

RUN1

RUN1 mode enable

0 RUNT1 mode is disabled
1 RUN1 mode is enabled

RUNO

RUNO mode enable

0 RUNO mode is disabled
1 RUNO mode is enabled

DRUN

DRUN mode enable

0 DRUN mode is disabled
1 DRUN mode is enabled

SAFE

SAFE mode enable

0 SAFE mode is disabled
1 SAFE mode is enabled

TEST

TEST mode enable

0 TEST mode is disabled
1 TEST mode is enabled

RESET

RESET mode enable

0 RESET mode is disabled
1 RESET mode is enabled

Doc ID 16912 Rev 5

151/936

Mode Entry Module (MC_ME) RM0046

Interrupt Status Register (ME_IS)

Figure 46. Interrupt Status Register (ME_IS)

Address 0xC3FD_C00C Access: User read, Supervisor read/write, Test read/write

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T i w
s8|k|¢

R| O 0 0 0 0 0 0 0 0 0 0 0 o s <<,§| §|
_ _ - -

w wic | wic | wic | wic

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the current interrupt status.

Table 42. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

Invalid mode configuration interrupt — This bit is set whenever a write operation to
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’
|_ICONF to this bit.

0 No invalid mode configuration interrupt occurred

1 Invalid mode configuration interrupt is pending

Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is
cleared by writing a ‘1’ to this bit.

I_IMODE - .

0 No invalid mode interrupt occurred

1 Invalid mode interrupt is pending

SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware
| SAFE requests generated in the system. It is cleared by writing a ‘1’ to this bit.

0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending

Mode transition complete interrupt — This bit is set whenever the mode transition process
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode
I_MTC transition interrupt bit will not be set while entering low-power modes HALTO, or STOPO.

0 No mode transition complete interrupt occurred

1 Mode transition complete interrupt is pending

152/936 Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Figure 47.

Address OxC3FD_C010

Interrupt Mask Register (ME_IM)

Interrupt Mask Register (ME_IM)

Access: User read, Supervisor read/write, Test read/write

1 3 5 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RooooooooooooLz'-%EE
®) ®)
" o |2 | |3
|
s |s|=|=2
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register controls whether an event generates an interrupt or not.
Table 43. Interrupt Mask Register (ME_IM) Field Descriptions
Field Description
Invalid mode configuration interrupt mask
M_ICONF |0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled
Invalid mode interrupt mask
M_IMODE |0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled
SAFE mode interrupt mask
M_SAFE |0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled
Mode transition complete interrupt mask
M_MTC |0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled
'] Doc ID 16912 Rev 5 153/936

Mode Entry Module (MC_ME)

RM0046

Invalid Mode Transition Status Register (ME_IMTS)

Figure 48.

Address 0xC3FD_C014

Invalid Mode Transition Status Register (ME_IMTS)

Access: User read, Supervisor read/write, Test read/write

1 3 5 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
= — < < <
e o
Rrolo|oflo|o|o|o|o|o]o|o|=Z|3]|3]|2 &
n » 0 2
w wic | wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register provides the status bits for the possible causes of an invalid mode interrupt.
Table 44. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions
Field Description
Mode Transition lllegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 6.4.5, “Mode
S_MTI Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal
Mode Request lllegal status — This bit is set whenever the target mode requested is not a valid
S MRI mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode
Disabled Mode Access status — This bit is set whenever the target mode requested is one of
S DMA those disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode
Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
S NMA those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode
SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit
is pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’
S_SEA to this bit.
0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending
154/936 Doc ID 16912 Rev 5 1S

RM0046 Mode Entry Module (MC_ME)

Debug Mode Transition Status Register (ME_DMTS)

Figure 49. Debug Mode Transition Status Register (ME_DMTS)

Address 0xC3FD_C018 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> O O]
»n le) m
) [os [a] o
R PREVIOUS_MODE 0 0 0 0 @, 0 0 a w 0 0 =
T &) o »
o = @)
= o (&)
W

Reset 0 0 0 0 0 0 0 0

o
o
o
o
o
o
o
o

_
(o]
_
~
_
o]
_
©
N
o
N
parg
N
N
N
w

25 26 27 28

w
=

CFLASH_SC

By
o
VREG_CSRC_SC
CSRC_CSRC_SC
16 MHz_IRC_SC
SCSRC_SC
SYSCLK_SW
DFLASH_SC
CDP_PRPH_0_143| R
o
o
o
o
CDP_PRPH_64_95|%3
CDP_PRPH_32_63|%
CDP_PRPH_0_31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o

This register provides the status of different factors which influence mode transitions. It is
used to give an indication of why a mode transition indicated by ME_GS.S_MTRANS may
be taking longer than expected.

Note: The ME_DMTS register does not indicate whether a mode transition is ongoing. Therefore,
some ME_DMTS bits may still be asserted after the mode transition has completed.

K‘YI Doc ID 16912 Rev 5 155/936

Mode Entry Module (MC_ME) RM0046

Table 45. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

Previous device mode — These bits show the mode in which the device was prior to the
latest change to the current mode.
0000 RESET

0001 TEST

0010 SAFE

0011 DRUN

0100 RUNO

0101 RUN1

0110 RUN2

0111 RUN3

1000 HALTO

1001 reserved

1010 STOPO

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 reserved

MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested a
mode change from the MC_PCU and the MC_PCU has not yet responded. It is cleared when
MPH_BUSY the MC_PCU has responded.

0 Handshake is not busy

1 Handshake is busy

MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the
process of powering up or down power domains. It is cleared when all power-up/down
PMC_PROG processes have completed.

0 Power-up/down transition is not in progress

1 Power-up/down transition is in progress

PREVIOUS_MODE

Processor is in Debug mode indicator — This bit is set while the processor is in debug mode.

CORE_DBG 0 The processor is not in debug mode
1 The processor is in debug mode

SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE

mode request has been triggered. It is cleared when the hardware SAFE mode request has
SMR been cleared.

0 A SAFE mode request is not active
1 A SAFE mode request is active

Main VREG dependent Clock Source State Change during mode transition indicator — This
bit is set when a clock source which depends on the main voltage regulator to be powered-up
is requested to change its power up/down state. It is cleared when the clock source has
completed its state change.

0 No state change is taking place
1 A state change is taking place

VREG_CSRC_SC

(Other) Clock Source dependent Clock Source State Change during mode transition indicator
— This bit is set when a clock source which depends on another clock source to be powered-
up is requested to change its power up/down state. It is cleared when the clock source has
completed its state change.

0 No state change is taking place
1 A state change is taking place

CSRC_CSRC_SC

156/936 Doc ID 16912 Rev 5 KYI

RM0046 Mode Entry Module (MC_ME)
Table 45. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)
Field Description

16 MHz_IRC_SC

16 MHz_IRC State Change during mode transition indicator — This bit is set when the 16
MHz internal RC oscillator is requested to change its power up/down state. It is cleared when
the 16 MHz internal RC oscillator has completed its state change.

0 No state change is taking place
1A state change is taking place

SYSCLK_SW

System Clock Switching pending status —
0 No system clock source switching is pending
1A system clock source switching is pending

DFLASH_SC

DFLASH State Change during mode transition indicator — This bit is set when the DFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
completed its state change.

0 No state change is taking place
1A state change is taking place

CFLASH_SC

CFLASH State Change during mode transition indicator — This bit is set when the CFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
completed its state change.

0 No state change is taking place
1A state change is taking place

CDP_PRPH_0_143

Clock Disable Process Pending status for Peripherals 0...143 — This bit is set when any
peripheral has been requested to have its clock disabled. It is cleared when all the peripherals
which have been requested to have their clocks disabled have entered the state in which their
clocks may be disabled.

0 No peripheral clock disabling is pending

1Clock disabling is pending for at least one peripheral

CDP_PRPH_64_95

Clock Disable Process Pending status for Peripherals 64...95 — This bit is set when any
peripheral appearing in ME_PS2 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1Clock disabling is pending for at least one peripheral

CDP_PRPH_32_63

Clock Disable Process Pending status for Peripherals 32...63 — This bit is set when any
peripheral appearing in ME_PS1 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1Clock disabling is pending for at least one peripheral

CDP_PRPH_0_31

Clock Disable Process Pending status for Peripherals 0...31 — This bit is set when any
peripheral appearing in ME_PSO0 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1Clock disabling is pending for at least one peripheral

Doc ID 16912 Rev 5 157/936

Mode Entry Module (MC_ME) RM0046

RESET Mode Configuration Register (ME_RESET_MC)

Figure 50. RESET Mode Configuration Register (ME_RESET_MC)
Address 0xC3FD_C020 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
Rl O 0 0 0 0 0 0 0 |[PDO| O 0 E DFLAON CFLAON
=
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
&
pd
= O
5|8 | ¢&
R| O 0 0 0 0 0 0 0 0 S O N SYSCLK
O 8 T
o < s
©
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
This register configures system behavior during RESET mode. Please refer to Table 46 for
detalils.
TEST Mode Configuration Register (ME_TEST_MC)
Figure 51. TEST Mode Configuration Register (ME_TEST_MC)
Address 0xC3FD_C024 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
z
@)
R| O 0 0 0 0 0 0 0 0 0 o
PDO E DFLAON CFLAON
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RRo|o|lo|o0o|[oO0O]O0O] O] |O0]oO &
Z | O
P (o) T
18| = SYSCLK
w =
o < s
(o]
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
158/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Mode Entry Module (MC_ME)

Note:

This register configures system behavior during TEST mode. Please refer to Table 46 for
details.

Byte write accesses are not allowed to this register.

SAFE Mode Configuration Register (ME_SAFE_MC)

Figure 52. SAFE Mode Configuration Register (ME_SAFE_MC)

Address OxC3FD_C028 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
Rl O 0 0 0 0 0 0 0 0 0 o DFLAON CFLAON
>
PDO 2
w
Reset 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o)
Z
518|¢
Rl O 0 0 0 0 0 0 0 0 S O N SYSCLK
0 8 T
o < s
©
W
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
This register configures system behavior during SAFE mode. Please refer to Table 46 for
details.
Note: Byte write accesses are not allowed to this register.
1S7 Doc ID 16912 Rev 5 159/936

Mode Entry Module (MC_ME) RM0046

DRUN Mode Configuration Register (ME_DRUN_MC)

Figure 53. DRUN Mode Configuration Register (ME_DRUN_MC)

Address 0xC3FD_C02C Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
Rl O 0 0 0 0 0 0 0 |[PDO| O 0 [
< | DFLAON | CFLAON
w

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pz

o}

O

z | 5| &

Rl 0 0 0 0 0 0 0 0 o618 |

S| o |z SYSCLK
a 92 =
a1 Qe
W

Reset 0 O ©O0 o0 /0 O O O ,0 O O 1,0 0 0 O

This register configures system behavior during DRUN mode. Please refer to Table 46 for
details.

Note: Byte write accesses are not allowed to this register.

160/936 Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

Figure 54. RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

Address 0xC3FD_CO030 - 0xC3FD_C03C

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)

Rl o| o|o|o|o]| o| o] o|pPDO|] O| 0] &
g DFLAON | CFLAON
Rest 0 O O o0, 0 O O O0O/,0 o0 O 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

=

o)

O

z | 5| &

Rl 0 0 0 0 0 0 0 0 o618 |

S| o |z SYSCLK

_| 2] =

Qe
Rest 0 O O o0 0 O O O/, 0 0O O 1.0 0 0 o0

This register configures system behavior during RUNO...3 modes. Please refer to Table 46

for details.
Note:

Byte write accesses are not allowed to this register.

HALTO Mode Configuration Register (ME_HALTO0_MC)

Figure 55. HALTO Mode Configuration Register (ME_HALTO_MC)

Address 0OxC3FD_C040

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
Rl o| o] o| o] o| o] o| o/|pPO| O] O0]|G&
g DFLAON | CFLAON
Resst 0 0o o0 o/ 0 o o0 O0O/|O0O o o0 1 1 0 1 o0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RRo|o|lo|o0o|[oO0O]O0O] O] |O0]oO &
Z O
Z | ©
o o o
S |9 N SYSCLK
_ o) T
o < s
©
Resst 0 OO o0 o0/ 0 OO o0 O/|O0O O o0 1|0 o0 o0 o©

Doc ID 16912 Rev 5

161/936

Mode Entry Module (MC_ME)

RM0046

This register configures system behavior during HALTO mode. Please refer to Table 46 for
details.

Note: Byte write accesses are not allowed to this register.

Note: The reset value of the DFLAON field in the ME_HALTO_MC register is “10”. This reset value
is illegal for the data flash. Thus, the reset value for the HALTO mode configuration cannot
be used as is and must be set to a legal value before requesting the entry of the HALTO
mode.

STOPO Mode Configuration Register (ME_STOP0_MC)
Figure 56. STOPO Mode Configuration Register (ME_STOPO_MC)
Address OxC3FD_C048 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
pd
o
R| O 0 0 0 0 0 0 0 0 0 o
PDO < | DFLAON | CFLAON
W
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o)
z P o
6|8 |¢c
Rl O 0 0 0 0 0 0 0 0 9 O N SYSCLK
- 8 T
o < s
©
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
This register configures system behavior during STOPO mode. Please refer to Table 46 for
details.

Note: Byte write accesses are not allowed to this register.

Table 46. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions

Field Description
I/0 output power-down control — This bit controls the output power-down of 1/Os.
0 No automatic safe gating of I/0s used and pads power sequence driver is enabled
PDO 1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power
sequence driver is disabled. The inputs are level unchanged. In STOPO mode, only the pad
power sequence driver is disabled, but the state of the output remains functional.
Main voltage regulator control — This bit specifies whether main voltage regulator is switched
MVRON off or not while entering this mode.
1 Main voltage regulator is switched on
162/936 Doc ID 16912 Rev 5 1S

RMO0046

Mode Entry Module (MC_ME)

Table 46. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions (continued)

Field Description

DFLAON Data flash power-down control — This bit specifies the operating mode of the data flash after
entering this mode.
00 reserved
01 Data flash is in power-down mode
10 reserved
11 Data flash is in normal mode

CFLAON Code flash power-down control — This bit specifies the operating mode of the code flash after
entering this mode.
00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode
system PLL control

PLLOON 0 system PLL is switched off
1 system PLL is switched on
4 MHz crystal oscillator control

XOSCOON 0 4 MHz crystal oscillator is switched off
1 4 MHz crystal oscillator is switched on
16 MHz internal RC oscillator control
16 MHz_IRCON |0 16 MHz internal RC oscillator is switched off

1 16 MHz internal RC oscillator is switched on
System clock switch control — These bits specify the system clock to be used by the system.
0000 16 MHz int. RC osc.
0001 reserved
0010 4 MHz crystal osc.
0011 reserved
0100 system PLL
0101 reserved
0110 reserved

SYSCLK 0111 reserved

1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled in TEST mode, reserved in all other modes

Doc ID 16912 Rev 5 163/936

Mode Entry Module (MC_ME) RM0046

Peripheral Status Register 0 (ME_PS0)

Figure 57. Peripheral Status Register 0 (ME_PS0)

Address 0xC3FD_C060 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
T S,
o
b
< <
Rl O 0 0 0 0 % 0 0 0 0 0 0 0 0 0 Cx)
3 T
n (/)l
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
& T S
RRro|o|o|lo|lo|lo|]o|o|o|&|&|&|o]| o] o] o
" " "
(%) (%) %)
w

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please refer to Table 47 for details.
Peripheral Status Register 1 (ME_PS1)
Figure 58. Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C064 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13

—
>
—
o

0

o

o

o

o

o

o

o

o

o

o

o

o

o

o
S_LIN_FLEX_1
S_LIN_FLEX_O

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
<:JI o

= N o
= 2 P o
RRO)o|ojojo|o|&|ofo|lE}lo|o0o]qg|o0]|o0]|Q

(0]
nd o @ »

(2]

w

Reset 0 0 O O 0O O O O ,0 O O 0|0 0 0 0

164/936 Doc ID 16912 Rev 5 KYI

RM0046 Mode Entry Module (MC_ME)

This register provides the status of the peripherals. Please refer to Table 47 for details.
Peripheral Status Register 2 (ME_PS2)

Figure 59. Peripheral Status Register 2 (ME_PS2)

Address 0xC3FD_C068 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
=
Rl O 0 0 ﬂ-l 0 0 0 0 0 0 0 0 0 0 0 0
7))

Reset 0 0 0

o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please refer to Table 47 for details.

Table 47. Peripheral Status Registers 0...4 (ME_PSO0...4) Field Descriptions
Field Description

Peripheral status — These bits specify the current status of the peripherals in the system. If no
peripheral is mapped on a particular position (i.e., the corresponding MODS bit is ‘0’), the
S_<periph> | corresponding bit is always read as ‘0’.

0 Peripheral is frozen

1 Peripheral is active

KYI Doc ID 16912 Rev 5 165/936

Mode Entry Module (MC_ME)

RM0046

Figure 60. Run Peripheral Configuration Registers (ME_RUN_PCO...7)

Address OxC3FD_C080 - 0xC3FD_C09C

Run Peripheral Configuration Registers (ME_RUN_PCO0...7)

Access: User read, Supervisor read/write, Test read/write

1 2 3 4 5 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
m
Rl 0 0 0 0 0 0 0 0 2|1 ¢z |2 |3 |Ww 5|9
> > > > oc < L [is
i [is i i a %) [
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
These registers configure eight different types of peripheral behavior during run modes.
Table 48. Run Peripheral Configuration Registers (ME_RUN_PCO...7) Field Descriptions
Field Description
Peripheral control during RUN3
RUN3 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during RUN2
RUN2 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during RUN1
RUN1 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during RUNO
RUNO 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during DRUN
DRUN 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during SAFE
SAFE 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during TEST
TEST 0 Peripheral is frozen with clock gated
1 Peripheral is active
Peripheral control during RESET
RESET |0 Peripheral is frozen with clock gated
1 Peripheral is active
166/936 Doc ID 16912 Rev 5 1S

RM0046 Mode Entry Module (MC_ME)

Low-Power Peripheral Configuration Registers (ME_LP_PCO0...7)

Figure 61. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7)
Address 0xC3FD_COAOQ - 0xC3FD_CO0BC Access: User read, Supervisor read/write, Test read/write

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0| o 0 ol &|o0o|g] o 0 0| 0 0 0| o 0

o <

w <'7; T
Reset 0 O o0 o0/ 0 O O O, ,0 o0 O OO0 O O0 O

These registers configure eight different types of peripheral behavior during non-run modes.

Table 49. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions

Field Description

Peripheral control during STOPO

STOPO |0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral control during HALTO

HALTO 0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral Control Registers (ME_PCTLO...143)

Figure 62. Peripheral Control Registers (ME_PCTLO...143)

Address 0xC3FD_CO0CO - 0xC3FD_C14F Access: User read, Supervisor read/write, Test read/write
1 2 3 ‘ 4 5 6 7
R 0
DBG_F LP_CFG RUN_CFG
w
Reset 0 0 0 0 ‘ 0 0 0 0

These registers select the configurations during run and non-run modes for each peripheral.

K‘YI Doc ID 16912 Rev 5 167/936

Mode Entry Module (MC_ME) RM0046

Table 50. Peripheral Control Registers (ME_PCTLO...143) Field Descriptions
Field Description
Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode
0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode
1 Peripheral is frozen if not already frozen in device modes.
DBG_F
Note: This feature is useful to freeze the peripheral state while entering debug. For
example, this may be used to prevent a reference timer from running while
making a debug accesses.
Peripheral configuration select for non-run modes — These bits associate a configuration as
defined in the ME_LP_PCO...7 registers to the peripheral.
000 Selects ME_LP_PCO configuration
001 Selects ME_LP_PC1 configuration
LP cFg |010 Selects ME_LP_PC2 configuration
- 011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PCS5 configuration
110 Selects ME_LP_PCB6 configuration
111 Selects ME_LP_PC7 configuration
Peripheral configuration select for run modes — These bits associate a configuration as defined
in the ME_RUN_PCO...7 registers to the peripheral.
000 Selects ME_RUN_PCO configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
RUN_CF o
UN_CFG 011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PCS6 configuration
111 Selects ME_RUN_PC?7 configuration
6.4 Functional Description
6.4.1 Mode Transition Request
The transition from one mode to another mode is normally handled by software by
accessing the mode control register ME_MCTL. But the in case of special events, the mode
transition can be automatically managed by hardware. In order to switch from one mode to
another, the application should access the ME_MCTL register twice by writing
® the first time with the value of the key (0x5AFO0) into the KEY bit field and the required
target mode into the TARGET_MODE bit field,
® and the second time with the inverted value of the key (OXA50F) into the KEY bit field
and the required target mode into the TARGET_MODE bit field.
Once a valid mode transition request is detected, the target mode configuration information
is loaded from the corresponding ME_<mode>_MC register. The mode transition request
may require a number of cycles depending on the programmed configuration, and software
should check the S_CURRENT_MODE bit field and the S_MTRANS bit of the global status
register ME_GS to verify when the mode has been correctly entered and the transition
process has completed. For a description of valid mode requests, please refer to
Section 6.4.5, “Mode Transition Interrupts®.
168/936 Doc ID 16912 Rev 5 1S

RM0046 Mode Entry Module (MC_ME)

Any modification of the mode configuration register of the currently selected mode will not
be taken into account immediately but on the next request to enter this mode. This means
that transition requests such as RUNO...3 /£ RUNO...3, DRUN A DRUN, SAFE A SAFE,
and TEST A TEST are considered valid mode transition requests. As soon as the mode
request is accepted as valid, the S_MTRANS bit is set till the status in the ME_GS register
matches the configuration programmed in the respective ME_<mode>_MC register.

Note: It is recommended that software poll the S_MTRANS bit in the ME_GS register after
requesting a transition to HALTO or STOPO modes.

SYSTEM MODES fecoverable USER MODES
hardware failure | _ _ _ _ _ _

software
request

non-recoverable
failure

Figure 63. MC_ME Mode Diagram

6.4.2 Modes Details
RESET Mode

The device enters this mode on the following events:

e from SAFE, DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0000”

® from any mode due to a system reset by the MC_RGM because of some non-
recoverable hardware failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset
sequence is finished. The mode configuration information for this mode is provided by the

K‘YI Doc ID 16912 Rev 5 169/936

Mode Entry Module (MC_ME) RM0046

Note:

Note:

170/936

ME_RESET_MC register. This mode has a pre-defined configuration, and the 16 MHz int.
RC osc. is selected as the system clock.

DRUN Mode

The device enters this mode on the following events:
e automatically from RESET mode after completion of the reset sequence

® from RUNO...3, SAFE, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0011”

As soon as any of the above events has occurred, a DRUN mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_DRUN_MC register. In this mode, the flashes, all clock sources, and the system clock
configuration can be controlled by software as required. After system reset, the software
execution starts with the default configuration selecting the 16 MHz int. RC osc. as the
system clock.

This mode is intended to be used by software
@ toinitialize all registers as per the system needs

Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

SAFE Mode

The device enters this mode on the following events:
® from DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0010”

o from any mode except RESET due to a SAFE mode request generated by the
MC_RGM because of some potentially recoverable hardware failure in the system (see
the MC_RGM chapter for details)

As soon as any of the above events has occurred, a SAFE mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_SAFE_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC
osc. is selected as the system clock.

If the SAFE mode is requested by software while some other mode transition process is
ongoing, the new target mode becomes the SAFE mode regardless of other pending
requests or new requests during the mode transition. No new mode request made during a
transition to the SAFE mode will cause an invalid mode interrupt.

If software requests to change to the SAFE mode and then requests to change back to the
parent mode before the mode transition is completed, the device’s final mode after mode
transition will be the SAFE mode.

As long as a SAFE event is active, the system remains in the SAFE mode, and any software
mode request during this time is ignored and lost.
This mode is intended to be used by software
® to assess the severity of the cause of failure and then to either
— re-initialize the device via the DRUN mode, or
— completely reset the device via the RESET mode.

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Note:

Note:

If the outputs of the system I/Os need to be forced to a high impedance state upon entering
this mode, the PDO bit of the ME_SAFE_MC register should be set. The input levels remain
unchanged.

TEST Mode

The device enters this mode on the following events:

o from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is
written with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_TEST_MC register. Except for the main voltage regulator, all resources of the system
are configurable in this mode. The system clock to the whole system can be stopped by
programming the SYSCLK bit field to “1111”, and in this case, the only way to exit this mode
is via a device reset.

This mode is intended to be used by software
® to execute software test routines

Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

RUNGO...3 Modes

The device enters one of these modes on the following events:

o from the DRUN, SAFE, or another RUNO...3 mode when the TARGET_MODE bit field
of the ME_MCTL register is written with “0100...0111”

o from the HALTO mode due to an interrupt event

e from the STOPO mode due to an interrupt or wakeup event

As soon as any of the above events has occurred, a RUNO...3 mode transition request is
generated. The mode configuration information for these modes is provided by the
ME_RUNO...3_MC registers. In these modes, the flashes, all clock sources, and the system
clock configuration can be controlled by software as required.

These modes are intended to be used by software
® to execute application routines

Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

HALTO Mode

The device enters this mode on the following events:

® from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1000”.

As soon as any of the above events has occurred, a HALTO mode transition request is
generated. The mode configuration information for this mode is provided by ME_HALTO_MC
register. This mode is quite configurable, and the ME_HALTO_MC register should be
programmed according to the system needs. The flashes can be put in low-power or power-
down mode as needed. If there is a HALTO mode request while an interrupt request is
active, the transition to HALTO is aborted with the resultant mode being the current mode,

Doc ID 16912 Rev 5 171/936

Mode Entry Module (MC_ME) RM0046

6.4.3

172/936

SAFE (on SAFE mode request), or DRUN (on reset), and an invalid mode interrupt is not
generated.

This mode is intended as a first-level low-power mode with

® the core clock frozen

® only a few peripherals running

and to be used by software

o to wait until it is required to do something and then to react quickly (i.e., within a few
system clock cycles of an interrupt event)

STOPO Mode

The device enters this mode on the following events:
e from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1010”.

As soon as any of the above events has occurred, a STOPO mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_STOPO_MC register. This mode is fully configurable, and the ME_STOPQO_MC register
should be programmed according to the system needs. The following clock sources are
switched off in this mode:

® the system PLL
The flashes can be put in power-down mode as needed. If there is a STOP0 mode request
while any interrupt or wakeup event is active, the transition to STOPO is aborted with the

resultant mode being the current mode, SAFE (on SAFE mode request), or DRUN (on
reset), and an invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all
peripherals stopped.

This mode is intended as an advanced low-power mode with

® the core clock frozen

® almost all peripherals stopped

and to be used by software
® to wait until it is required to do something with no need to react quickly (e.g., allow for
system clock source to be re-started)

This mode can be used to stop all clock sources and thus preserve the device status. When
exiting the STOPO mode, the 16 MHz internal RC oscillator clock is selected as the system
clock until the target clock is available.

Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner
depending on the current device mode and the requested target mode. In many cases of
mode transition, not all steps need to be executed based on the mode control information,
and some steps may not be applicable according to the mode definition itself.

Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys.
This mode transition request by software must be a valid request satisfying a set of pre-

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

defined rules to initiate the process. If the request fails to satisfy these rules, it is ignored,
and the TARGET_MODE bit field is not updated. An optional interrupt can be generated for
invalid mode requests. Refer to Section 6.4.5, “Mode Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a
SAFE mode request, or interrupt requests and wakeup events to exit from low-power
modes, the TARGET_MODE bit field of the ME_MCTL register is automatically updated with
the appropriate target mode. The mode change process start is indicated by the setting of
the mode transition status bit S_MTRANS of the ME_GS register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which
generates a global system reset and initiates the reset sequence. The RESET mode
request has the highest priority, and the MC_ME is kept in the RESET mode during the
entire reset sequence.

The SAFE mode request has the next highest priority after reset. It can be generated either
by software via the ME_MCTL register from all software running modes including DRUN,
RUNO...3, and TEST or by the MC_RGM after the detection of system hardware failures,
which may occur in any mode.

Target Mode Configuration Loading

On completion of the Target Mode Request step, the target mode configuration from the
ME_<target mode>_MC register is loaded to start the resources (voltage sources, clock
sources, flashes, pads, etc.) control process.

An overview of resource control possibilities for each mode is shown in . A ¥’ indicates that
a given resource is configurable for a given mode.

Table 51. MC_ME Resource Control Overview

Mode
Resource
RESET TEST SAFE DRUN RUNO...3 HALTO STOPO
16 V V N
MHz_IRC on on on on on on on
V v V V v
XOSCo
off off off off off off off
N N N N
PLLO
off off off off off off off
V N V V v
CFLASH power-
normal normal normal normal normal low-power
down
v N v V v
DFLASH power-
normal normal normal normal normal low-power
down
V v
MVREG
on on on on on on on
Doc ID 16912 Rev 5 173/936

Mode Entry Module (MC_ME) RM0046

174/936

Table 51. MC_ME Resource Control Overview (continued)

Mode
Resource
RESET TEST SAFE DRUN RUNO...3 HALTO STOPO
V V N
PDO
off off on off off off off

Peripheral Clocks Disable

On completion of the Target Mode Request step, the MC_ME requests each peripheral to
enter its stop mode when:

® the peripheral is configured to be disabled via the target mode, the peripheral

configuration registers ME_RUN_PCQO0...7 and ME_LP_PCO...7, and the peripheral
control registers ME_PCTLO...143

Warning: The MC_ME does not automatically request peripherals to
enter their stop modes if the power domains in which they
are residing are to be turned off due to a mode change.
Therefore, it is software’s responsibility to ensure that those
peripherals that are to be powered down are configured in
the MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The
MC_ME then disables the corresponding clock(s) to this peripheral.

In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals
to acknowledge the stop requests. The SAFE mode clock gating configuration is applied
immediately regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 6.4.6, “Peripheral Clock Gating”for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected
ensures that these outputs are forced to a safe or recessive state when the device enters
the SAFE mode.

Processor Low-Power Mode Entry

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the HALTO
mode, the MC_ME requests the processor to enter its halted state. The processor
acknowledges its halt state request after completing all outstanding bus transactions.

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the STOPO
mode, the MC_ME requests the processor to enter its stopped state. The processor
acknowledges its stop state request after completing all outstanding bus transactions.

Processor and System Memory Clock Disable

If, on completion of the Processor Low-Power Mode Entry step, the mode transition is to the
HALTO or STOPO mode and the processor is in its appropriate halted or stopped state, the
MC_ME disables the processor and system memory clocks to achieve further power saving.

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

The clocks to the processor and system memory are unaffected while transitioning between
software running modes such as DRUN, RUNO...3, and SAFE.

Warning: Clocks to the whole device including the processor and
system memory can be disabled in TEST mode.

Clock Sources Switch-On

On completion of the Processor Low-Power Mode Entry step, the MC_ME switches on all
clock sources based on the <clock source>ON bits of the ME_<current mode>_MC and
ME_<target mode>_MC registers. The following clock sources are switched on at this step:

o the 16 MHz internal RC oscillator
® the 4 MHz crystal oscillator
® the system PLL

The clock sources that are required by the target mode are switched on. The duration
required for the output clocks to be stable depends on the type of source, and all further
steps of mode transition depending on one or more of these clocks waits for the stable
status of the respective clocks. The availability status of these clocks is updated in the
S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order
to not disturb the system clock which might require one of these clocks before switching to a
different target clock.

Flash Modules Switch-On

On completion of the step, if one or more of the flashes needs to be switched to normal
mode from its low-power or power-down mode based on the CFLAON and DFLAON bit
fields of the ME_<current mode>_MC and ME_<target mode>_MC registers, the MC_ME
requests the flash to exit from its low-power/power-down mode. When the flashes are
available for access, the S_CFLA and S_DFLA bit fields of the ME_GS register are updated
to “11” by hardware.

Warning: Itis illegal to switch the flashes from low-power mode to
power-down mode and from power-down mode to low-power
mode. The MC_ME, however, does not prevent this nor does
it flag it.

Pad Outputs-On

On completion of the step, if the PDO bit of the ME_<target mode>_MC register is cleared,
then

® all pad outputs are enabled to return to their previous state

® the I/O pads power sequence driver is switched on

Doc ID 16912 Rev 5 175/936

Mode Entry Module (MC_ME) RM0046

176/936

Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers
ME_RUN_PCO...7, ME_LP_PCO...7, and the peripheral control registers ME_PCTLO...143,
the MC_ME enables the clocks for selected modules as required. This step is executed only
after the process is completed.

Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALTO or STOPO to RUNO...3,
the clocks to the processor and system memory are enabled. The process of enabling these
clocks is executed only after the Flash Modules Switch-On process is completed.

Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALTO orSTOPO to RUNO...3, the
MC_ME requests the processor to exit from its halted or stopped state. This step is
executed only after the Processor and Memory Clock Enable process is completed.

System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and

ME_<target mode>_MC registers, if the target and current system clock configurations

differ, the following method is implemented for clock switching.

® The target clock configuration for the 16 MHz int. RC osc. takes effect only after the
S_16 MHz_IRC bit of the ME_GS register is set by hardware (i.e., the 16 MHz internal
RC oscillator has stabilized).

® The target clock configuration for the 4 MHz crystal osc. takes effect only after the
S_XOSCO bit of the ME_GS register is set by hardware (i.e the 4 MHz crystal oscillator
has stabilized).

® The target clock configuration for the system PLL takes effect only after the S_PLLO bit
of the ME_GS register is set by hardware (i.e., the system PLL has stabilized).

o If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”.
This is possible only in theTEST mode.

The current system clock configuration can be observed by reading the S_SYSCLK bit field
of the ME_GS register, which is updated after every system clock switching. Until the target
clock is available, the system uses the previous clock configuration.

System clock switching starts only after

® the Clock Sources Switch-On process has completed if the target system clock source
is one of the following:

— the 16 MHz internal RC oscillator
— the system PLL

® the Peripheral Clocks Disable process has completed in order not to change the
system clock frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in
Table 52. A Y indicates that a given clock source is selectable for a given mode.

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Table 52. MC_ME System Clock Selection Overview
System Mode
Clock
Source RESET TEST SAFE DRUN RUNO...3 HALTO STOPO
oMy v v v v v v
o.sc (default) (default) (default) (default) (default) (default) (default)
4 MHz
crystal S \ S S \
oscC.
system
BLL \ \ \ V
system
clock is V@
disabled

1. disabling the system clock during TEST mode will require a reset in order to exit TEST mode

Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then
® the outputs of the pads are forced to the high impedance state if the target mode is
SAFE or TEST

This step is executed only after the Peripheral Clocks Disable process has completed.

Clock Sources (with no Dependencies) Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC
registers, if a given clock source is to be switched off and no other clock source needs it to
be on, the MC_ME requests the clock source to power down and updates its availability
status bit S_<clock source> of the ME_GS register to ‘0. The following clock sources
switched off at this step:

® the 4 MHz crystal oscillator
® the system PLL

This step is executed only after the System Clock Switching process has completed.

Clock Sources (with Dependencies) Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC
registers, if a given clock source is to be switched off and all clock sources which need this
clock source to be on have been switched off, the MC_ME requests the clock source to
power down and updates its availability status bit S_<clock source> of the ME_GS register
to ‘0’. The following clock sources switched off at this step:

® the 16 MHz internal RC oscillator

This step is executed only after

® the System Clock Switching process has completed in order not to lose the current
system clock during mode transition

® the Clock Sources (with no Dependencies) Switch-Off process has completed in order
to, for example, prevent unwanted lock transitions

Doc ID 16912 Rev 5 177/936

Mode Entry Module (MC_ME) RM0046

178/936

Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flashes is to be put in its low-power or power-
down mode, the MC_ME requests the flash to enter the corresponding power mode and
waits for the flash to acknowledge. The exact power mode status of the flashes is updated in
the S_CFLA and S_DFLA bit fields of the ME_GS register. This step is executed only when
the Processor and System Memory Clock Disable process has completed.

Current Mode Update
The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated
with the target mode bit field TARGET_MODE of the ME_MCTL register when:

@ all the updated status bits in the ME_GS register match the configuration specified in
the ME_<target mode>_MC register

® power sequences are done

® clock disable/enable process is finished

® processor low-power mode (halt/stop) entry and exit processes are finished
Software can monitor the mode transition status by reading the S_MTRANS bit of the
ME_GS register. The mode transition latency can differ from one mode to another

depending on the resources’ availability before the new mode request and the target mode’s
requirements.

If a mode transition is taking longer to complete than is expected, the ME_DMTS register
can indicate which process is still in progress.

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Target Mode Request

l«—— Write ME_MCTL register

l«—— SAFE mode request
l«—— interrupt/wakeup event

P | ——)

Y

Pad
Outputs On

Y

Peripheral Clocks
Enable

Y

Clock Sources Without
Dependencies Switch-Off

v

Clock Sources With
Dependencies Switch-Off
1

| Y
| 2 Clock Sources
‘é Switch-On
=
\El
‘UJ
| Y
\ FLASH
‘ Switch-On
| Y
| Peripheral Clocks
Disable Y
| Processor &
| Y Memory
| Processor Clock Enable
Low-Power

| Entry Y Y v
| System Clock Processor
p ! Py Switching LOWI-EPC)twer

rocessor Xi
| Memory |
| Clock Disable
\
|
Y Y
| FLASH PAD
‘ Switch-Off Outputs Off
\ | 9
|
\
|
\
\
L 1

Current Mode Update |—» S_MTRANS =0
Y
End

Figure 64. MC_ME Transition Diagram

574

Doc ID 16912 Rev 5

-

ANALOG ON

_ _ _ANALOGOFF ____ DIGITALCONTROL _ _ _ ANALOGON _ _

179/936

Mode Entry Module (MC_ME) RM0046

6.4.4

Note:

6.4.5

180/936

Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules
must be respected. Otherwise, the write operation is ignored and an invalid mode
configuration interrupt may be generated.

e Ifthe 16 MHz int. RC osc. is selected as the system clock, 16 MHz_IRC must be on.

® If the 4 MHz crystal osc. clock is selected as the system clock, OSC must be on.

o If the system PLL clock is selected as the system clock, PLL must be on.

® The 4 MHz crystal oscillator must be on if the system PLL is on. Therefore, when
writing a ‘1’ to PLLOON, a ‘1’ must also be written to XOSCOON.

Software must ensure that clock sources with dependencies other than those mentioned
above are swithced on as needed. There is no automatic protection mechanism to check
this in the MC_ME.

® Configuration “00” for the CFLAON and DFLAON bit fields is reserved.
Configuration “10” for the DFLAON bit field is reserved.

If the DFLAON bit field is set to “11”, the CFLAON field must also be set to “11”.
System clock configurations marked as ‘reserved’ may not be selected.

Configuration “1111” for the SYSCLK bit field is allowed only for theTEST mode, and
only in this case may all system clock sources be turned off.

Warning: If the system clock is stopped during TEST mode, the device
can exit only via a system reset.

Mode Transition Interrupts

The MC_ME provides interrupts for incorrectly configuring a mode, requesting an invalid
mode transition, indicating a SAFE mode transition not due to a software request, and
indicating when a mode transition has completed.

Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the
protection rules mentioned in the Section 6.4.4, “Protection of Mode Configuration
Registers, the interrupt pending bit I_ICONF of the ME_IS register is set and an interrupt
request is generated if the mask bit M_ICONF of ME_IM register is ‘1°.

Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

® If the system is in the SAFE mode and the SAFE mode request from MC_RGM is
active, and if the target mode requested is other than RESET or SAFE, then this new
mode request is considered to be invalid, and the S_SEA bit of the ME_IMTS register is
set.

o Ifthe TARGET_MODE bit field of the ME_MCTL register is written with a value different
from the specified mode values (i.e., a non-existing mode), an invalid mode transition
event is generated. When such a non existing mode is requested, the S_NMA bit of the

Doc ID 16912 Rev 5 KYI

RMO0046

Mode Entry Module (MC_ME)

Note:

ME_IMTS register is set. This condition is detected regardless of whether the proper
key mechanism is followed while writing the ME_MCTL register.

o If some of the device modes are disabled as programmed in the ME_ME register, their
respective configurations are considered reserved, and any access to the ME_MCTL
register with those values results in an invalid mode transition request. When such a
disabled mode is requested, the S_DMA bit of the ME_IMTS register is set. This
condition is detected regardless of whether the proper key mechanism is followed while
writing the ME_MCTL register.

o If the target mode is not a valid mode with respect to the current mode, the mode
request illegal status bit S_MRI of the ME_IMTS register is set. This condition is
detected only when the proper key mechanism is followed while writing the ME_MCTL
register. Otherwise, the write operation is ignored.

o If further new mode requests occur while a mode transition is in progress (the
S_MTRANS bit of the ME_GS register is ‘1’), the mode transition illegal status bit
S_MTI of the ME_IMTS register is set. This condition is detected only when the proper
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write
operation is ignored.

As the causes of invalid mode transitions may overlap at the same time, the priority
implemented for invalid mode transition status bits of the ME_IMTS register in the order
from highest to lowest is S_SEA, S_NMA, S_DMA, S_MRI, and S_MT].

As an exception, the mode transition request is not considered as invalid under the following
conditions:

® A new request is allowed to enter the RESET or SAFE mode irrespective of the mode
transition status.

® As the exit of HALTO and STOPO modes depends on the interrupts of the system which
can occur at any instant, these requests to return to RUNO...3 modes are always valid.

® Inorder to avoid any unwanted lockup of the device modes, software can abort a mode
transition by requesting the parent mode if, for example, the mode transition has not
completed after a software determined ‘reasonable’ amount of time for whatever
reason. The parent mode is the device mode before a valid mode request was made.

® Self-transition requests (e.g., RUNO /£ RUNO) are not considered as invalid even when
the mode transition process is active (i.e., S_MTRANS is ‘1’). During the low-power
mode exit process, if the system is not able to enter the respective RUNO...3 mode
properly (i.e., all status bits of the ME_GS register match with configuration bits in the
ME_<mode>_MC register), then software can only request the SAFE or RESET mode.
It is not possible to request any other mode or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the
ME_IS register is set, and an interrupt request is generated if the mask bit M_IMODE of the
ME_IM register is ‘1°.

SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the
MC_RGM due to a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register
is set, and an interrupt is generated if the mask bit M_SAFE of ME_IM register is ‘1’.

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is
deasserted by the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE
mode request). If the system is already in SAFE mode, any new SAFE mode request by the
MC_RGM also sets the interrupt pending bit I_SAFE. However, the SAFE mode interrupt

Doc ID 16912 Rev 5 181/936

Mode Entry Module (MC_ME) RM0046

6.4.6

6.4.7

182/936

pending bit is not set when the SAFE mode is entered by a software request (i.e.,
programming of ME_MCTL register).

Mode Transition Complete interrupt

Whenever the system fully completes a mode transition (i.e., the S_MTRANS bit of ME_GS
register transits from ‘1’ to ‘0’), the interrupt pending bit _MTC of the ME_IS register is set,
and an interrupt request is generated if the mask bit M_MTC of the ME_IM register is ‘1°.
The interrupt bit _MTC is not set when entering low-power modes HALTO and STOPQO in
order to avoid the same event requesting the immediate exit of these low-power modes.

Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating
policy determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PCO...7 are chosen only during the
software running modes DRUN, TEST, SAFE, and RUNO...3. All configurations are
programmable by software according to the needs of the application. Each configuration
register contains a mode bit which determines whether or not a peripheral clock is to be
gated. Run configuration selection for each peripheral is done by the RUN_CFG bit field of
the ME_PCTLO...143 registers.

The low-power peripheral configuration registers ME_LP_PCO...7 are chosen only during
the low-power modes HALTO and STOPO. All configurations are programmable by software
according to the needs of the application. Each configuration register contains a mode bit
which determines whether or not a peripheral clock is to be gated. Low-power configuration
selection for each peripheral is done by the LP_CFG bit field of the ME_PCTLO...143
registers.

Any modifications to the ME_RUN_PCO0...7, ME_LP_PCO...7, and ME_PCTLO...143
registers do not affect the clock gating behavior until a new mode transition request is
generated.

Whenever the processor enters a debug session during any mode, the following occurs for
each peripheral:

® The clock is gated if the DBG_F bit of the associated ME_PCTLO...143 register is set.
Otherwise, the peripheral clock gating status depends on the RUN_CFG and LP_CFG
bits. Any further modifications of the ME_RUN_PCO0...7, ME_LP_PCO0...7, and
ME_PCTLO...143 registers during a debug session will take affect immediately without
requiring any new mode request.

Application Example

Figure 65 shows an example application flow for requesting a mode change and then
waiting until the mode transition has completed.

Doc ID 16912 Rev 5 KYI

RM0046 Mode Entry Module (MC_ME)

(START of mode change >

config
for target mode
okay?

write ME_<target mode>_MC,
ME_RUN_PCO...7, ME_LP_PCO0...7,
and ME_PCTLO...143 registers

write ME_MCTL with target mode
and key

v

write ME_MCTL with target mode
and inverted key

¢<

start timer

S_MTRANS
cleared?

timer
expired?

stop timer

Y

(mode change DONE) write ME_MCTL with current or
SAFE mode and key

v

write ME_MCTL with current or
SAFE mode and inverted key

Figure 65. MC_ME Application Example Flow Diagram

KYI Doc ID 16912 Rev 5 183/936

Power Control Unit (MC_PCU)

RMO0046

7

7.1

7.1.1

Power Control Unit (MC_PCU)

Introduction

Overview

The power control unit (MC_PCU) acts as a bridge for mapping the PMU peripheral to the
MC_PCU address space.

Figure 66 depicts the MC_PCU block diagram.

MC_PCU

Registers

Platform Interface

Mapped Module Interface

Figure 66. MC_PCU Block Diagram

7.1.2

184/936

Features

The MC_PCU includes the following features:

maps the PMU registers to the MC_PCU address space

Doc ID 16912 Rev 5

core

mapped
peripheral

RM0046 Power Control Unit (MC_PCU)

7.2 External Signal Description
The MC_PCU has no connections to any external pins.
7.3 Memory Map and Register Definition

7.3.1 Memory Map

Table 53. MC_PCU Register Description

Access
Address Name Description Size Location
User |Supervisor| Test

0xC3FE

8040 PCU_PSTAT | Power Domain Status Register | word| read read read | on page 7-186

Note: Any access to unused registers as well as write accesses to read-only registers will:
— not change register content
— cause a transfer error

Table 54. MC_PCU Memory Map

Address Name o | 1 2 | 3|27| 5|6 |7 | 8|9 |10]11]12]|13]| 14| 15
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
0xC3FE
_80004
reserved
0xC3FE
_803C
R/O|jO|O|O|O|O|O|]O|]O|]O|]O|]O]|]O]|]O|O]|O
w
OXCSFE | by pTaT S
-8040 R|ofo|o|ojojofo|o0|O0f0|O0O|O0|0O|O0 OO
w
0x044
reserved
0x07C
0xC3FE
_8080
PMU registers
0xC3FE
_80FC
0xC3FE
_8100
reserved
0xC3FE
_BFFC

KYI Doc ID 16912 Rev 5 185/936

Power Control Unit (MC_PCU) RM0046

7.3.2 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the PDO field of the PCU_PSTAT register
may be accessed as a word at address OxC3FE_8040, as a half-word at address
OxC3FE_8042, or as a byte at address OxC3FE_8043.

Power Domain Status Register (PCU_PSTAT)

Figure 67. Power Domain Status Register (PCU_PSTAT)
Address OxC3FE_8040 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20
3

e

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
PDO |

This register reflects the power status of all available power domains.

Table 55. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

Power status for power domain #n
PDn | OPower domain is inoperable
1Power domain is operable

186/936 Doc ID 16912 Rev 5 KYI

RM0046 Reset Generation Module (MC_RGM)

8 Reset Generation Module (MC_RGM)
8.1 Introduction
8.1.1 Overview

The reset generation module (MC_RGM) centralizes the different reset sources and
manages the reset sequence of the device. It provides a register interface and the reset
sequencer. Various registers are available to monitor and control the device reset sequence.
The reset sequencer is a state machine which controls the different phases (PHASEO,
PHASE1, PHASE2, PHASES, and IDLE) of the reset sequence and controls the reset
signals generated in the system.

Figure 68 depicts the MC_RGM block diagram.

K‘YI Doc ID 16912 Rev 5 187/936

Reset Generation Module (MC_RGM) RM0046

MC_RGM
power-on — g
1.2V low-voltage detected < > MC_ME
software watchdog timer
2.7V low-voltage detected Registers
(VREG)
2.7V low-voltage detected Platform Interface
(flash) | MC_CGM
2.7V low-voltage detected (I/O)
gg p-| Peripherals
o
S
> B2
L O
Qo
Reset
RESET_B [X}—— State
Machine
JTAG initiated reset §—P core
core reset
software reset © E
checkstop reset 5 i
PLLO fail - Q ‘g;:
oscillator frequency lower than T 2
reference
CMUO clock frequency
higher/lower than reference
4.5V low-voltage detected
code or data flash fatal error
PLL1 fail
PAD[4:2] [— Boot Mode >
Capture SSCM

Figure 68. MC_RGM Block Diagram

188/936 Doc ID 16912 Rev 5 KYI

RMO0046

Reset Generation Module (MC_RGM)

8.1.2

8.1.3

Features

The MC_RGM contains the functionality for the following features:
‘destructive’ resets management

‘functional’ resets management

signalling of reset events after each reset sequence (reset status flags)
conversion of reset events to SAFE mode or interrupt request events
short reset sequence configuration

bidirectional reset behavior configuration

boot mode capture on RESET_B deassertion

Reset Sources

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

® A ‘destructive’ reset source is associated with an event related to a critical - usually
hardware - error or dysfunction. When a ‘destructive’ reset event occurs, the full reset
sequence is applied to the device starting from PHASEOQ. This resets the full device
ensuring a safe start-up state for both digital and analog modules. ‘Destructive’ resets

are
— power-on reset

— 1.2V low-voltage detected

— software watchdog timer

- 2.7V low-voltage detected (VREG)
— 2.7V low-voltage detected (flash)
— 2.7V low-voltage detected (I/O)

— comparator error

® A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial
reset sequence is applied to the device starting from PHASE1. In this case, most digital
modules are reset normally, while analog modules or specific digital modules’ (e.g.,

debug modules, flash modules) state is preserved. ‘Functional’ resets are
— external reset

— JTAG initiated reset

— core reset

— software reset

— checkstop reset

— PLLO fail

— oscillator frequency lower than reference

— CMUO clock frequency higher/lower than reference
— 4.5V low-voltage detected

— code or data flash fatal error

— PLL1 fail

When a reset is triggered, the MC_RGM state machine is activated and proceeds through
the different phases (i.e., PHASERN states). Each phase is associated with a particular
device reset being provided to the system. A phase is completed when all corresponding

Doc ID 16912 Rev 5

189/936

Reset Generation Module (MC_RGM)

RMO0046

phase completion gates from either the system or internal to the MC_RGM are
acknowledged. The device reset associated with the phase is then released, and the state

machine proceeds to the next phase up to entering the IDLE phase. During this entire
process, the MC_ME state machine is held in RESET mode. Only at the end of the reset
sequence, when the IDLE phase is reached, does the MC_ME enter the DRUN mode.

Alternatively, it is possible for software to configure some reset source events to be
converted from a reset to either a SAFE mode request issued to the MC_ME or to an
interrupt issued to the core (see Section , “Functional Event Reset Disable Register
(RGM_FERD) and Section , “Functional Event Alternate Request Register (RGM_FEAR) for
‘functional’ resets).

8.2 External Signal Description
The MC_RGM interfaces to the bidirectional reset pin RESET_B and the boot mode pins
PADI[4:2].
8.3 Memory Map and Register Definition
Table 56. MC_RGM Register Description
Access
Address Name Description Size Location
User | Supervisor Test

0xC3FE . 3 .. (1) | read/write | on page 8-
4000 RGM_FES Functional Event Status half-word| read | read/write 1) 192
OxC3FE RGM_DES Destructive Event Status | half-word | read | read/write(") reac%\;vrlte on page 8-
_4002 194
O0xC3FE Functional Event Reset g . _(2) | read/write | on page 8-
4004 RGM_FERD Disable half-word | read | read/write @) 195
O0xC3FE Destructive Event Reset g on page 8-
4006 RGM_DERD Disable half-word | read read read 197
OxC3FE RGM_FEAR Functional Event Alternate half-word | read read/write | read/write | °" P39¢ 8-
_4010 Request 198
OxC3FE RGM_FESS Functional Event Short half-word | read read/write | read/write | " P29€ 8
_4018 Sequence 199
0xC3FE Functional Bidirectional g . . on page 8-
401G RGM_FBRE Reset Enable half-word | read read/write | read/write 200

1. individual bits cleared on writing ‘1’

2. write once: ‘0’ = enable, ‘1’ = disable.

Note:

190/936

Any access to unused registers as well as write accesses to read-only registers will not
change register content, and cause a transfer error.

Doc ID 16912 Rev 5

Reset Generation Module (MC_RGM)

RMO0046

y Map

MC_RGM Memor

Table 57.

_ 5] _ 8 _ _ _
21 & OviLr 4 S ¢lAAT 4 IS ovir d ¢LAANT d OVLII HvY
_ S _ _
I 8 3400 4 S o 3400 a o 3400 dv
_) _ 8 _ _
2 140S 4 = 1IMS 4 S 140S a IMS a ©
_) _
& &| dOLsSyHO 4 S © dOlSHMHO a © ©
_ 8 _ _ [9) _ _ _ _
TR 071d 4 S O3HA LcdNT 4 S 0711d d Y3HA LcdA1 A 071d dv
_ _ | o _ _ | o _ _ _ _ _ _
2] &|410 onNO 4 = HSV14d ZedAl 4 = d10 0ONNDO a HSV14d Z¢dAT d d7170 ONND H"Yv
_ _ 3 _ _ &) _ _ _ _ _ _
o| &|IH4 0NND 4 S Ol ZedAt 4 IS TH4 ONND A Ol Zednl @ TH4 ONIND HV
_) _ _
o SYAnl 4 = o SYan1 d o SYANT HVY
_) _
~ & HSVY1d 4 S o HSV1d A © 3 © 3
> >
_ o _ @ _)
o| N 1114 4 1S o I11d a © m FT1d dv m
w| T o o o o o
N| & o o o o o
o 2 o o o o o
~| 2 o o o o o
- & o o o o o
_) _ &) _
ol & dx3 4 S d0d 4 S dix3 d © ©
o = o = o o o
)
£ I a _o |
S S5 S sgs sC
z SRR 5E i o
L oo L cCco oC W
/)
@ g by ke L9 o <
o nS M3 03 ™8 % S now S
M va4_ nv.w4_ nv.w4_ va4_ X4_ X4_
< S S S S S S

191/936

Doc ID 16912 Rev 5

Reset Generation Module (MC_RGM)

RMO0046

Table 57. MC_RGM Memory Map (continued)
Address Name 0 1 2 3 27 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
— o o
T -
T O
o AR 2| Y o| SIE|L|&E|Q
5 Z|S5|S|S|s|Z2|%(3|8|8E
0xC3FE |RGM_ | R| (1 | 0 01 010 0 B hm | S s 2 h T 20 A
_4018 |FESS o o |28 3' S| o | B B 1o
o | B »
Rlolo|o|]o|lOoO|O|]O|O|O|O|]O|O|]O]O|O]|oO
— o o
T |
O
c i 5| 2| Y Slg|E ||l |9
n £ |3/5/18|s|2|%|8|8 |8
0xC3FE |[RGM_ | R ol o010 00 R R E: fﬁ' o 2
_401C |FBRE @ o (WIH |99 0| | o8]|a
L L
0 | m o
w
Rlojo|o|OoO|O|O|O|O|]O|]O|O|O|O|O|O]oO
w
OxC3FE
_4020
reserved
OxC3FE
_7FFC
8.3.1 Register Descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the
RGM_DESI[8:15] register bits may be accessed as a word at address OxC3FE_4000, as a
half-word at address OXC3FE_4002, or as a byte at address OxC3FE_4004.

Functional Event Status Register (RGM_FES)

Figure 69. Functional Event Status Register (RGM_FES)

Address OxC3FE_4000

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
— o a
T —
T O
% 512|128 |d|2|3|k|E|5 |8
R| i 0 0 0 0 0 _ >) 4 =
w' o Lol 2 S | 5|9 S |2
[T w w Ol &) L Ol (TR W [T
L 0 L
W| wic wic | wic | wic | wic | wic | wic | wic | wic | wic | wic
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
192/936 Doc ID 16912 Rev 5 KYI

RM0046 Reset Generation Module (MC_RGM)

This register contains the status of the last asserted functional reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1’

Table 58. Functional Event Status Register (RGM_FES) Field Descriptions

Field Description

Flag for External Reset

F EXR 0 No external reset event has occurred since either the last clear or the last destructive reset
- assertion

1 An external reset event has occurred

Flag for PLL1 fail

F_PLL1 0 No PLL1 fail event has occurred since either the last clear or the last destructive reset assertion
1 A PLL1 fail event has occurred

Flag for code or data flash fatal error

F FLASH 0 No code or data flash fatal error event has occurred since either the last clear or the last
- destructive reset assertion

1 A code or data flash fatal error event has occurred

Flag for 4.5V low-voltage detected

F LVD45 0 No 4.5V low-voltage detected event has occurred since either the last clear or the last destructive
- reset assertion

1 A 4.5V low-voltage detected event has occurred

Flag for CMUO clock frequency higher/lower than reference

F CMUO FHL 0 No CMUO clock frequency higher/lower than reference event has occurred since either the last
- - clear or the last destructive reset assertion

1 A CMUO clock frequency higher/lower than reference event has occurred

Flag for oscillator frequency lower than reference

F CMUO OLR 0 No oscillator frequency lower than reference event has occurred since either the last clear or the
- - last destructive reset assertion

1 A oscillator frequency lower than reference event has occurred

Flag for PLLO fail

F_PLLO 0 No PLLO fail event has occurred since either the last clear or the last destructive reset assertion
1 A PLLO fail event has occurred

Flag for checkstop reset

F_CHKSTOP 0 No chc_eckstop reset event has occurred since either the last clear or the last destructive reset
assertion

1 A checkstop reset event has occurred

Flag for software reset

F SOFT 0 No software reset event has occurred since either the last clear or the last destructive reset
- assertion

1 A software reset event has occurred

KYI Doc ID 16912 Rev 5 193/936

Reset Generation Module (MC_RGM)

RMO0046

Table 58. Functional Event Status Register (RGM_FES) Field Descriptions (continued)
Field Description
Flag for core reset
F_CORE 0 No core reset event has occurred since either the last clear or the last destructive reset assertion
1 A core reset event has occurred
Flag for JTAG initiated reset
F JTAG 0 No JTAG initiated reset event has occurred since either the last clear or the last destructive reset
- assertion
1 A JTAG initiated reset event has occurred

Destructive Event Status Register (RGM_DES)

Figure 70. Destructive Event Status Register (RGM_DES)

Address OxC3FE_4002

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 ih| 12 13 14 15
L O]
)
O | <« | E N
RIE|o|ojojo|lofo|o|lo|&|n|x|o0o|3d|0]S5
n r a g ! 0!
0 i —ll
! L
W| wic wic | wic | wic wic wic
POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register contains the status of the last asserted destructive reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write 1’
Table 59. Destructive Event Status Register (RGM_DES) Field Descriptions
Field Description
Flag for Power-On reset
F_POR 0 No power-on event has occurred since the last clear
1 A power-on event has occurred
Flag for 2.7V low-voltage detected (I/O)
F D27 10 |© No 2.7V low-voltage detected (I/0) event has occurred since either the last clear or the last

power-on reset assertion
1 A 2.7V low-voltage detected (I/O) event has occurred

F_LvVD27_FLASH

Flag for 2.7V low-voltage detected (flash)

0 No 2.7V low-voltage detected (flash) event has occurred since either the last clear or the last
power-on reset assertion

1 A 2.7V low-voltage detected (flash) event has occurred

194/936

Doc ID 16912 Rev 5

RM0046 Reset Generation Module (MC_RGM)
Table 59. Destructive Event Status Register (RGM_DES) Field Descriptions (continued)
Field Description

F_LvD27_VREG

Flag for 2.7V low-voltage detected (VREG)

0 No 2.7V low-voltage detected (VREG) event has occurred since either the last clear or the last
power-on reset assertion

1 A 2.7V low-voltage detected (VREG) event has occurred

Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-

F_SWT .
on reset assertion
1 A software watchdog timer event has occurred
Flag for 1.2V low-voltage detected
F LVD12 0 No 1.2V low-voltage detected event has occurred since either the last clear or the last power-

on reset assertion
1 A 1.2V low-voltage detected event has occurred

Note:

Figure 71.

The F_POR flag is automatically cleared on a 1.2 V low-voltage detected ora 2.7 V low-
voltage detected. This means that if the power-up sequence is not monotonic (i.e., the
voltage rises and then drops enough to trigger a low-voltage detection), the F_POR flag may
not be set but instead the <register>F_LVD12 or <register>F_LVD27 _VREG flag is set on
exiting the reset sequence. Therefore, if the F_POR, <register>F_LVD12 or
<register>F_LVD27 VREG flags are set on reset exit, software should interpret the reset
cause as power-on.

Functional Event Reset Disable Register (RGM_FERD)

Functional Event Reset Disable Register (RGM_FERD)

Address OxC3FE_4004 Access: User read, Supervisor read/write, Test read/write

o

Y
N

13 14 15

—_
o

11

~

1 2 3 4 5 6 8

D_EXR

D_PLLO

D_SOFT

D_CORE

o

o

o

o

o
D_PLL1
D_JTAG

D_FLASH

D_LVD45
D_CHKSTOP

D_CMUO_OLR

D_CMUO_FHL |

POR 0

o

0 0 0

o
o

0 0 0 0 0 0 0 0 0

This register provides dedicated bits to disable functional reset sources.When a functional
reset source is disabled, the associated functional event will trigger either a SAFE mode
request or an interrupt request (see Section, “Functional Event Alternate Request Register
(RGM_FEAR)). It can be accessed in read/write in either supervisor mode or test mode. It
can be accessed in read only in user mode. Each byte can be written only once after power-
on reset.

Doc ID 16912 Rev 5 195/936

Reset Generation Module (MC_RGM)

RMO0046

Table 60.

Functional Event Reset Disable Register (RGM_FERD) Field Descriptions

Field

Description

D_EXR

Disable External Reset
0 An external reset event triggers a reset sequence

D_PLL1

Disable PLL1 fail

0 A PLL1 fail event triggers a reset sequence
1 APLL1 fail event generates either a SAFE mode or an interrupt request depending on the value
of RGM_FEAR.AR_PLL1

D_FLASH

Disable code or data flash fatal error
0 A code or data flash fatal error event triggers a reset sequence

D_LVD45

Disable 4.5V low-voltage detected

0 A 4.5V low-voltage detected event triggers a reset sequence
1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_LVD45

D_CMUO_FHL

Disable CMUO clock frequency higher/lower than reference

0 A CMUO clock frequency higher/lower than reference event triggers a reset sequence

1 A CMUO clock frequency higher/lower than reference event generates either a SAFE mode or
an interrupt request depending on the value of RGM_FEAR.AR_CMUOQO_FHL

D_CMUO_OLR

Disable oscillator frequency lower than reference

0 A oscillator frequency lower than reference event triggers a reset sequence

1 A oscillator frequency lower than reference event generates either a SAFE mode or an interrupt
request depending on the value of RGM_FEAR.AR_CMUO_OLR

D_PLLO

Disable PLLO fail
0 A PLLO fail event triggers a reset sequence

1 APLLO fail event generates either a SAFE mode or an interrupt request depending on the value
of RGM_FEAR.AR_PLLO

D_CHKSTOP

Disable checkstop resetl
0 A checkstop reset event triggers a reset sequence

D_SOFT

Disable software reset
0 A software reset event triggers a reset sequence

D_CORE

Disable core reset

0 A core reset event triggers a reset sequence

1 A core reset event generates either a SAFE mode or an interrupt request depending on the
value of RGM_FEAR.AR_CORE

D_JTAG

Disable JTAG initiated reset
0 A JTAG initiated reset event triggers a reset sequence

1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request depending
on the value of RGM_FEAR.AR_JTAG

196/936

Doc ID 16912 Rev 5

RMO0046

Reset Generation Module (MC_RGM)

Destructive Event Reset Disable Register (RGM_DERD)

Figure 72. Destructive Event Reset Disable Register (RGM_DERD)

Address OxC3FE_4006 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P 0]
o | 2| UL
| T > = o
& | ! = 2
Rl 0O 0 0 0 0 0 0 0 0) N N 0 %) 0 >
> QA Aa | _II
_I| g > o o
) 3 -
o) o
w
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides dedicated bits to disable particular destructive reset sources. It can be
accessed in read-only in supervisor mode, test mode, and user mode.

Table 61. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions

Field

Description

D_LvD27_IO

Disable 2.7V low-voltage detected (I/O)
0 A 2.7V low-voltage detected (I/O) event triggers a reset sequence

D_LvD27_FLASH

Disable 2.7V low-voltage detected (flash)
0 A 2.7V low-voltage detected (flash) event triggers a reset sequence

D_LVD27_VREG

Disable 2.7V low-voltage detected (VREG)
0 A 2.7V low-voltage detected (VREG) event triggers a reset sequence

D_SWT

Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence

D_LVD12

Disable 1.2V low-voltage detected
0 A 1.2V low-voltage detected event triggers a reset sequence

Doc ID 16912 Rev 5 197/936

Reset Generation Module (MC_RGM) RM0046

Functional Event Alternate Request Register (RGM_FEAR)

Figure 73. Functional Event Alternate Request Register (RGM_FEAR)

Address OxC3FE_4010 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I o
w | | O W
i = ! 3 c |
— o o — () =
R| O 0 0 0 0 0 o 0 > 2 2 o 0 0 1S)
| | s = | | |
< |9 |9 g T | Z
< o n:I <
< <
w
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register defines an alternate request to be generated when a reset on a functional
event has been disabled. The alternate request can be either a SAFE mode request to
MC_ME or an interrupt request to the system. It can be accessed in read/write in either
supervisor mode or test mode. It can be accessed in read only in user mode.

Table 62. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions

Field Description

Alternate Request for PLL1 fail

AR_PLLA1 0 Generate a SAFE mode request on a PLL1 fail event if the reset is disabled
1 Generate an interrupt request on a PLL1 fail event if the reset is disabled

Alternate Request for 4.5V low-voltage detected

AR_LVD45 0 Generate a SAFE mode request on a 4.5V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 4.5V low-voltage detected event if the reset is disabled

Alternate Request for CMUO clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMUO clock frequency higher/lower than reference

AR_CMUO_FHL event if the reset is disabled
1 Generate an interrupt request on a CMUO clock frequency higher/lower than reference event

if the reset is disabled

Alternate Request for oscillator frequency lower than reference
0 Generate a SAFE mode request on a oscillator frequency lower than reference event if the

AR_CMUO_OLR reset is disabled
1 Generate an interrupt request on a oscillator frequency lower than reference event if the reset

is disabled

Alternate Request for PLLO fail

AR_PLLO 0 Generate a SAFE mode request on a PLLO fail event if the reset is disabled
1 Generate an interrupt request on a PLLO fail event if the reset is disabled

Alternate Request for core reset

AR_CORE 0 Generate a SAFE mode request on a core reset event if the reset is disabled
1 Generate an interrupt request on a core reset event if the reset is disabled

Alternate Request for JTAG initiated reset

AR_JTAG 0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

198/936 Doc ID 16912 Rev 5 KYI

RMO0046

Reset Generation Module (MC_RGM)

Functional Event Short Sequence Register (RGM_FESS)

Figure 74. Functional Event Short Sequence Register (RGM_FESS)

Address OxC3FE_4018 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
z |5 o
T O
oc O 7} < & O| S = f E g
x O < o o o _|) e) o |<_(
R| W 0 0 0 0 0 o = >) - o 4 1) o =
0 ® t ' = = o o) ! ! »
%) » | 2131919 | a BB | o
» » %) %) A
175} »n »n
w
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register defines which reset sequence will be done when a functional reset sequence is
triggered. The functional reset sequence can either start from PHASE1 or from PHASES,
skipping PHASE1 and PHASE2.

Note: This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed
in read in user mode.

Table 63. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions

Field

Description

SS_EXR

Short Sequence for External Reset
0 The reset sequence triggered by an external reset event will start from PHASE1

SS_PLL1

Short Sequence for PLL1 fail

0 The reset sequence triggered by a PLL1 fail event will start from PHASE1
1 The reset sequence triggered by a PLL1 fail event will start from PHASES3, skipping PHASE1

and PHASE2

SS_FLASH

Short Sequence for code or data flash fatal error
0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1

SS_LVD45

Short Sequence for 4.5V low-voltage detected

0 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE1

1 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASES3,
skipping PHASE1 and PHASE2

SS_CMUO_FHL

Short Sequence for CMUO clock frequency higher/lower than reference

0 The reset sequence triggered by a CMUO clock frequency higher/lower than reference event
will start from PHASE1

1 The reset sequence triggered by a CMUO clock frequency higher/lower than reference event
will start from PHASES, skipping PHASE1 and PHASE2

SS_CMUO_OLR

Short Sequence for oscillator frequency lower than reference
0 The reset sequence triggered by a oscillator frequency lower than reference event will start

from PHASE1
1 The reset sequence triggered by a oscillator frequency lower than reference event will start

from PHASES, skipping PHASE1 and PHASE2

Doc ID 16912 Rev 5 199/936

Reset Generation Module (MC_RGM) RM0046

Table 63. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions
Field Description
Short Sequence for PLLO fail
SS PLLO 0 The reset sequence triggered by a PLLO fail event will start from PHASE1
- 1 The reset sequence triggered by a PLLO fail event will start from PHASES3, skipping PHASE1
and PHASE2
hort for checkst t
SS_CHKSTOP Short Sequence for ¢ gc stop rese .
0 The reset sequence triggered by a checkstop reset event will start from PHASE1
SS SOFT Short Sequence for software reset
- 0 The reset sequence triggered by a software reset event will start from PHASE1
Short Sequence for core reset
SS CORE 0 The reset sequence triggered by a core reset event will start from PHASE1
- 1 The reset sequence triggered by a core reset event will start from PHASE3, skipping PHASE1
and PHASE2
Short Sequence for JTAG initiated reset
SS JTAG 0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
- 1 The reset sequence triggered by a JTAG initiated reset event will start from PHASES, skipping
PHASE1 and PHASE2
Note: This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

Functional Bidirectional Reset Enable Register (RGM_FBRE)

Figure 75. Functional Bidirectional Reset Enable Register (RGM_FBRE)

Address OxC3FE_401C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T |5 o
T O
o ri O I G T T = T = B i -
RRW|[o|lo|o|]o]o|a|Zd |3 |2|2|8 |2 |3 |8]|65
o Oy | g = ool S o Fo)
- o | 8| @ BTN
i m
M oM o
w
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register enables the generation of an external reset on functional reset. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read in

user mode.

200/936 Doc ID 16912 Rev 5

RMO0046

Reset Generation Module (MC_RGM)

Table 64.

Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field

Description

BE_EXR

Bidirectional Reset Enable for External Reset
ORESET_B is asserted on an external reset event if the reset is enabled
1RESET_B is not asserted on an external reset event

BE_PLLA1

Bidirectional Reset Enable for PLL1 fail
ORESET_B is asserted on a PLL1 fail event if the reset is enabled
1RESET_B is not asserted on a PLL1 fail event

BE_FLASH

Bidirectional Reset Enable for code or data flash fatal error
ORESET_B is asserted on a code or data flash fatal error event if the reset is enabled
1RESET_B is not asserted on a code or data flash fatal error event

BE_LVD45

Bidirectional Reset Enable for 4.5V low-voltage detected
ORESET_B is asserted on a 4.5V low-voltage detected event if the reset is enabled
1RESET_B is not asserted on a 4.5V low-voltage detected event

BE_CMUO_FHL

Bidirectional Reset Enable for CMUO clock frequency higher/lower than reference

ORESET_B is asserted on a CMUO clock frequency higher/lower than reference event if the
reset is enabled

1RESET_B is not asserted on a CMUO clock frequency higher/lower than reference event

BE_CMUO_OLR

Bidirectional Reset Enable for oscillator frequency lower than reference

ORESET_B is asserted on a oscillator frequency lower than reference event if the reset is
enabled

1RESET_B is not asserted on a oscillator frequency lower than reference event

BE_PLLO

Bidirectional Reset Enable for PLLO fail
ORESET_B is asserted on a PLLO fail event if the reset is enabled
1RESET_B is not asserted on a PLLO fail event

BE_CHKSTOP

Bidirectional Reset Enable for checkstop reset
ORESET_B is asserted on a checkstop reset event if the reset is enabled
1RESET_B is not asserted on a checkstop reset event

BE_SOFT

Bidirectional Reset Enable for software reset
ORESET_B is asserted on a software reset event if the reset is enabled
1RESET_B is not asserted on a software reset event

BE_CORE

Bidirectional Reset Enable for core reset
ORESET_B is asserted on a core reset event if the reset is enabled
1RESET_B is not asserted on a core reset event

BE_JTAG

Bidirectional Reset Enable for JTAG initiated reset
ORESET_B is asserted on a JTAG initiated reset event if the reset is enabled
1RESET_B is not asserted on a JTAG initiated reset event

Doc ID 16912 Rev 5

201/936

Reset Generation Module (MC_RGM) RM0046

8.4 Functional Description
8.4.1 Reset State Machine
The main role of MC_RGM is the generation of the reset sequence which ensures that the
correct parts of the device are reset based on the reset source event. This is summarized in
Table 65.
Table 65. MC_RGM Reset Implications
Source What Gets Reset External_ Re(?)e t Boot Mode
Assertion Capture
power-on reset all yes yes
‘destructive’ resets all except some clock/reset management yes yes
external reset all except some clock/reset management and programmable(z) yes

debug

‘functional’ resets

all except some clock/reset management and

(2) (3)
debug programmable programmable

resets®

shortened ‘functional’

flip-flops except some clock/reset management programmable(z) programmable(3)

‘external reset assertion’ means that the RESET_B pin is asserted by the MC_RGM until the end of reset PHASE3

. the assertion of the external reset is controlled via the RGM_FBRE register

1
2
3. the boot mode is captured if the external reset is asserted
4

. the short sequence is enabled via the RGM_FESS register

Note:

202/936

JTAG logic has its own independent reset control and is not controlled by the MC_RGM in
any way.

The reset sequence is comprised of five phases managed by a state machine, which
ensures that all phases are correctly processed through waiting for a minimum duration and
until all processes that need to occur during that phase have been completed before
proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 76.

Doc ID 16912 Rev 5 KYI

RM0046 Reset Generation Module (MC_RGM)

power-on
or enabled
‘destructive’
reset
duration > 3 16 MHz internal RC oscillator clock cycles
16 MHz IRC stable, VREG voltage okay done
enabled non-

shortened

external or

‘functional’
reset’

duration > 350 16 MHz internal RC oscillator clock cycles

enabled
shortened
external or
‘functional’
reset

duration > 8 16 MHz internal RC oscillator clock cycles
code and data flash initialization done

duration > 40 16 MHz internal RC oscillator clock cycles
RESET_B released
code and data flash initialization done

Figure 76. MC_RGM State Machine

K‘!I Doc ID 16912 Rev 5 203/936

Reset Generation Module (MC_RGM) RM0046

8.4.2

204/936

PHASEO Phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’
reset event. The reset state machine exits PHASEO and enters PHASE1 on verification of
the following:

® all enabled ‘destructive’ resets have been processed
® all processes that need to be done in PHASEO are completed
— 16 MHz IRC stable, VREG voltage okay

® aminimum of 3 16 MHz internal RC oscillator clock cycles have elapsed since power-
up completion and the last enabled ‘destructive’ reset event

PHASE1 Phase

This phase is entered either on exit from PHASEO or immediately from PHASE2, PHASES,
or IDLE on a non-masked external or ‘functional’ reset event if it has not been configured to
trigger a ‘short’ sequence. The reset state machine exits PHASE1 and enters PHASE?2 on
verification of the following:

® all enabled, non-shortened ‘functional’ resets have been processed

® a minimum of 350 16 MHz internal RC oscillator clock cycles have elapsed since the
last enabled external or non-shortened ‘functional’ reset event

PHASE2 Phase
This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and
enters PHASES on verification of the following:
® all processes that need to be done in PHASE2 are completed
— code and data flash initialization

® aminimum of 8 16 MHz internal RC oscillator clock cycles have elapsed since entering
PHASE2

PHASE3 Phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an
enabled, shortened ‘functional’ reset event. The reset state machine exits PHASE3 and
enters IDLE on verification of the following:

® all processes that need to be done in PHASE3 are completed
— code and data flash initialization

® aminimum of 40 16 MHz internal RC oscillator clock cycles have elapsed since the last
enabled, shortened ‘functional’ reset event

IDLE Phase

This is the final phase and is entered on exit from PHASES3. When this phase is reached, the
MC_RGM releases control of the system to the platform and waits for new reset events that
can trigger a reset sequence.

Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or
memory content can no longer be guaranteed.

Doc ID 16912 Rev 5 KYI

RMO0046

Reset Generation Module (MC_RGM)

8.4.3

Note:

8.4.4

The status flag associated with a given ‘destructive’ reset event
(RGM_DES.F_<destructive reset> bit) is set when the ‘destructive’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

The device’s low-voltage detector threshold ensures that, when 1.2V low-voltage detected is
enabled, the supply is sufficient to have the destructive event correctly propagated through
the digital logic. Therefore, if a given ‘destructive’ reset is enabled, the MC_RGM ensures
that the associated reset event will be correctly triggered to the full system. However, if the
given ‘destructive’ reset is disabled and the voltage goes below the digital functional
threshold, functionality can no longer be ensured, and the reset may or may not be
asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of
PHASEO.

External Reset

The MC_RGM manages the external reset coming from RESET_B. The detection of a
falling edge on RESET_B will start the reset sequence from the beginning of PHASE1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit)
is set when the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.
The RGM_FERD register can be written only once between two power-on reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning
of PHASE1. Nevertheless, the RGM_FESS register enables the further configuring of the
reset sequence triggered by the external reset. When RGM_FESS.SS_EXR is set, the
external reset will trigger a reset sequence starting directly from the beginning of PHASES,
skipping PHASE1 and PHASE2. This can be useful especially when an external reset
should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by

one of the following:

® a power-on reset

® a ‘destructive’ reset event

® an external reset event

® a ‘functional’ reset event configured via the RGM_FBRE register to assert the external
reset

In this case, the external reset is asserted until the end of PHASES.

Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed
that critical register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event

(RGM_FES.F_<functional reset> bit) is set when the ‘functional’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

Doc ID 16912 Rev 5 205/936

Reset Generation Module (MC_RGM) RM0046

Note:

8.4.5

Note:

Note:

8.4.6

Note:

206/936

The “functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

The RGM_FERD register can be written only once between two power-on reset events.

An enabled functional reset will normally trigger a reset sequence starting from the
beginning of PHASE1. Nevertheless, the RGM_FESS register enables the further
configuring of the reset sequence triggered by a functional reset. When
RGM_FESS.SS_<functional reset> is set, the associated ‘functional’ reset will trigger a
reset sequence starting directly from the beginning of PHASES, skipping PHASE1 and
PHASE2. This can be useful especially in case a functional reset should not reset the flash
module.

See the MC_ME chapter for details on the STANDBYO and DRUN modes.

Alternate Event Generation

The MC_RGM provides alternative events to be generated on reset source assertion. When
a reset source is asserted, the MC_RGM normally enters the reset sequence. Alternatively,
it is possible for some reset source events to be converted from a reset to either a SAFE
mode request issued to the MC_ME or to an interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_FERD and
RGM_FEAR registers as shown in Table 66.

Table 66. MC_RGM Alternate Event Selection

RGM_FERD RGM_FEAR Generated Event
Bit Value Bit Value
0 X reset
1 0 SAFE mode request
1 1 interrupt request

The alternate event is cleared by deasserting the source of the request (i.e., at the reset
source that caused the alternate request) and also clearing the appropriate RGM_FES
status bit.

Alternate requests (SAFE mode as well as interrupt requests) are generated regardless of
whether the system clock is running.

If a masked ‘functional’ reset event which is configured to generate a SAFE mode/interrupt
request occurs during PHASET1, it is ignored, and the MC_RGM will not send any safe
mode/interrupt request to the MC_ME.

Boot Mode Capturing

The MC_RGM provides sampling of the boot mode PAD[4:2] for use by the system. This
sampling is done five 16 MHz internal RC oscillator clock cycles before the rising edge of
RESET_B. The result of the sampling is then provided to the system. For each bit, a value of
‘1’ is produced only if each of the oldest three of the five samples have the value ‘1’,
otherwise a value of ‘0’ is produced.

In order to ensure that the boot mode is correctly captured, the application needs to apply
the valid boot mode value to the device at least five 16 MHz internal RC oscillator clock
periods before the external reset deassertion crosses the V| threshold.

Doc ID 16912 Rev 5 KYI

RMO0046

Reset Generation Module (MC_RGM)

Note:

RESET_B can be low as a consequence of the internal reset generation. This will force re-
sampling of the boot mode pins. (See Table 65 for details.)

Doc ID 16912 Rev 5 207/936

Interrupt Controller (INTC) RM0046

9

9.2

208/936

Interrupt Controller (INTC)

Introduction

The INTC provides priority-based preemptive scheduling of interrupt service requests
(ISRs). This scheduling scheme is suitable for statically scheduled hard real-time systems.
The INTC supports 128 interrupt requests. It is targeted to work with Power Architecture
technology and automotive applications where the ISRs nest to multiple levels, but it also
can be used with other processors and applications.For high-priority interrupt requests in
these target applications, the time from the assertion of the peripheral’s interrupt request to
when the processor is performing useful work to service the interrupt request needs to be
minimized. The INTC supports this goal by providing a unique vector for each interrupt
request source. It also provides 16 priorities so that lower priority ISRs do not delay the
execution of higher priority ISRs. Because each individual application will have different
priorities for each source of interrupt request, the priority of each interrupt request is
configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that tasks
sharing the resource will not preempt each other.

Multiple processors can assert interrupt requests to each other through software
configurable interrupt requests. These software configurable interrupt requests can also be
used to separate the work involved in servicing an interrupt request into a high-priority
portion and a low-priority portion. The high-priority portion is initiated by a peripheral
interrupt request, but then the ISR can assert a software configurable interrupt request to
finish the servicing in a lower priority ISR. Therefore these software configurable interrupt
requests can be used instead of the peripheral ISR scheduling a task through the RTOS.

Features

® Supports 120 peripheral interrupt and 8 software-configurable interrupt request
sources

® Unique 9-bit vector per interrupt source
Each interrupt source programmable to one of 16 priorities
® Preemption
— Preemptive prioritized interrupt requests to processor
— ISR at a higher priority preempts ISRs or tasks at lower priorities
— Automatic pushing or popping of preempted priority to or from a LIFO
— Ability to modify the ISR or task priority; modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.
® Low latency—3 clock cycles from receipt of interrupt request from peripheral to
interrupt request to processor

Doc ID 16912 Rev 5 KYI

RMO0046

Interrupt Controller (INTC)

Table 67.

Interrupt sources available

Interrupt sources (128)

Number available

Software

ECSM

eDMA2x

SWT

—_

ST™M

SIUL

MC_ME

BN N N

MC_RGM

—_

XOSC

—_

PIT

ADC

FlexCAN

eTimer

| 00| W|H

FlexPWM

—_

CTuU

Safety Port

DSPI

15

LINFlex

Doc ID 16912 Rev 5

209/936

Interrupt Controller (INTC) RM0046
9.3 Block diagram
Figure 77 shows a block diagram of the interrupt controller (INTC).
Software -
Priority Module
Isrigrcrfatr Select Configuration Hardware
1P Registers Register Vector Enable
Registers 1
End of 7 >
] Interrupt Vector Table
Y n'x Highest Lowest Register Entry Size |
Flag Bits 4-bits Priority Vector
Peripheral Interrupt Interrupt Interrupt Y Interrupt
Interrupt 8 Y Requests Request Vector Processor 0 Vector
Requests n' | Priority n' Request n', | Vector 9, _ Interrupt 9, 3
| Arbitrator Selector Encoder Acknowledge
. . Register
4 Highest Priority A
Pushed New
Priority Priority Y Interrupt
_ 4 _ 4 Request to
-~ Processor 0 [Update Interrupt Vector 1 Processor
Pr(l);:r?;sito ro Popped Current Current Priority
Y Priority Priority Priority | comparator 1 >
LIFO 4 . 4 -~
» Register >
AA AAA A A
Interrupt Acknowledge 1
Push/Update/Acknowledge 1 Slave
Interface Peripheral
Pop 1 for Reads
& Writes

|:| Memory Mapped Registers
|:| Non-Memory Mapped Logic

1. The total number of interrupt sources is 128, which includes 16 reserved sources and 8 software sources.

Figure 77. INTC block diagram

9.4 Modes of operation

9.4.1 Normal mode
In normal mode, the INTC has two handshaking modes with the processor: software vector
mode and hardware vector mode.

Note: To correctly configure the interrupts in both software and hardware vector mode, the user
must also configure the IVPR. The core register IVPR contains the base address for the
interrupt handlers. Please refer to the core reference manual for more information.
Software vector mode
In software vector mode, the interrupt exception handler software must read a register in the
INTC to obtain the vector associated with the interrupt request to the processor. The INTC
will use software vector mode for a given processor when its associated HVEN bit in
INTC_MCR is negated. The hardware vector enable signal to processor 0 or processor 1 is
driven as negated when its associated HVEN bit is negated. The vector is read from

210/936 Doc ID 16912 Rev 5 1S

RMO0046

Interrupt Controller (INTC)

INC_IACKR. Reading the INTC_IACKR negates the interrupt request to the associated
processor. Even if a higher priority interrupt request arrived while waiting for this interrupt
acknowledge, the interrupt request to the processor will negate for at least one clock. The
reading also pushes the PRI value in INTC_CPR onto the associated LIFO and updates PRI
in the associated INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt
acknowledge signal from the associated processor is ignored.

Hardware vector mode

In hardware vector mode, the hardware signals the interrupt vector from the INTC in
conjunction with a processor that can use that vector. This hardware causes the first
instruction to be executed in handling the interrupt request to the processor to be specific to
that vector. Therefore, the interrupt exception handler is specific to a peripheral or software
configurable interrupt request rather than being common to all of them. The INTC uses
hardware vector mode for a given processor when the associated HVEN bit in the
INTC_MCR is asserted. The hardware vector enable signal to the associated processor is
driven as asserted. When the interrupt request to the associated processor asserts, the
interrupt vector signal is updated. The value of that interrupt vector is the unique vector
associated with the preempting peripheral or software configurable interrupt request. The
vector value matches the value of the INTVEC field in the INTC_IACKR field in the
INTC_IACKR, depending on which processor was assigned to handle a given interrupt
source.

The processor negates the interrupt request to the processor driven by the INTC by
asserting the interrupt acknowledge signal for one clock. Even if a higher priority interrupt
request arrived while waiting for the interrupt acknowledge, the interrupt request to the
processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the
associated PRI value in the associated INTC_CPR register onto the associated LIFO and
updates the associated PRI in the associated INTC_CPR register with the new priority. This
pushing of the PRI value onto the associated LIFO and updating PRI in the associated
INTC_CPR does not occur when the associated interrupt acknowledge signal asserts and
INTC_SSCIR0_3-INTC_SSCIR4_7 is written at a time such that the PRI value in the
associated INTC_CPR register would need to be pushed and the previously last pushed
PRI value would need to be popped simultaneously. In this case, PRI in the associated
INTC_CPR is updated with the new priority, and the associated LIFO is neither pushed or

popped.
Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

Stop mode

The INTC supports stop mode. The INTC can have its clock input disabled at any time by
the clock driver on the device. While its clocks are disabled, the INTC registers are not
accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an
interrupt request to the processor.

Doc ID 16912 Rev 5 211/936

Interrupt Controller (INTC) RM0046

9.5

9.5.1

9.5.2

212/936

Memory map and registers description

Module memory map

Table 68 shows the INTC memory map.

Table 68. INTC memory map

Offset from
INTC_BASE Register Location
0xFFF4_8000

0x0000 INTC Module Configuration Register (INTC_MCR) on page 9-213
0x0004 Reserved
0x0008 INTC Current Priority Register (INTC_CPR) ‘ on page 9-213
0x000C Reserved
0x0010 INTC Interrupt Acknowledge Register(INTC_IACKR) l on page 9-215
0x0014 Reserved
0x0018 INTC End-of-Interrupt Register (INTC_EOIR) ‘ on page 9-216
0x001C Reserved
0x0020-0x0027 %ngg“gj’;eo_sgfﬁ‘;g ’gtseglﬁ_@‘;g"s ters on page 9-216
0x0028— 0x003C | Reserved
0X0040—0x011C ;x;gj;ggtzyz g_eéezc;)ﬁ)egisters (INTC_PSRO_3- on page 9-218

0x0120-0x3FFF Reserved

1. The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled as Reserved in
Table 75.

Registers description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any
combination of accessing the four bytes of a register with a single access is supported,
provided that the access does not cross a register boundary. These supported accesses
include types and sizes of 8 bits, aligned 16 bits, misaligned 16 bits to the middle 2 bytes,
and aligned 32 bits.

Although INTC_SSCInand INTC_PSRn are 8 bits wide, they can be accessed with a single
16-bit or 32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless
of the size of the read. In either software or hardware vector mode, the size of a write to
either INTC_SSCIR0_3-INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of
the write.

INTC registers are accessible only when the core is in supervisor mode (see Section 15.4.3,
“ECSM_reg_protection).

Doc ID 16912 Rev 5 KYI

RM0046 Interrupt Controller (INTC)

INTC Module Configuration Register (INTC_MCR)

The module configuration register configures options of the INTC.

Figure 78. INTC Module Configuration Register (INTC_MCR)

Address: Base + 0x0000 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R{ O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

VTES HVEN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 69. INTC_MCR field descriptions

Field Description

Vector table entry size

Controls the number of Os to the right of INTVEC in Section , “INTC Interrupt Acknowledge

Register(INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a
26 vector table as in software vector mode, then the number of right most 0s will determine the size of

VTES each vector table entry. VTES impacts software vector mode operation but also affects

INTC_IACKR[INTVEC] position in both hardware vector mode and software vector mode.

0 4 bytes

1 8 bytes

Hardware vector enable
31 Controls whether the INTC is in hardware vector mode or software vector mode. Refer to Section 9.4,
HVEN “Modes of operation, for the details of the handshaking with the processor in each mode.
0 Software vector mode
1 Hardware vector mode

INTC Current Priority Register (INTC_CPR)

Figure 79. INTC Current Priority Register (INTC_CPR)

Address: Base + 0x0008 Access: User read/write

n
w
N
(6]
[«
~
®
©
-
o
=

0 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R| O 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

PRI

KYI Doc ID 16912 Rev 5 213/936

Interrupt Controller (INTC) RM0046

Table 70.

INTC_CPR field descriptions

Field

Description

Priority

PRI is the priority of the currently executing ISR according to the following:
1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

28-31 | 1001 Priority 9
PRI[0:3] | 1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority
The INTC_CPR masks any peripheral or software settable interrupt request set at the same
or lower priority as the current value of the INTC_CPRI[PRI] field from generating an
interrupt request to the processor. When the INTC interrupt acknowledge register
(INTC_IACKR) is read in software vector mode or the interrupt acknowledge signal from the
processor is asserted in hardware vector mode, the value of PRI is pushed onto the LIFO,
and PRI is updated with the priority of the preempting interrupt request. When the INTC
end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the INTC_CPR’s
PRI field.
The masking priority can be raised or lowered by writing to the PRI field, supporting the
PCP. Refer to Section 9.7.5, “Priority ceiling protocol.

Note: A store to modify the PRI field that closely precedes or follows an access to a shared
resource can result in a non-coherent access to the resource. Refer to Section , "Ensuring
coherency, for example code to ensure coherency.

214/936 Doc ID 16912 Rev 5 Ky_l

RM0046 Interrupt Controller (INTC)

INTC Interrupt Acknowledge Register(INTC_IACKR)

Figure 80. INTC Interrupt Acknowledge Register (INTC_IACKR)
Address Base + 0x0010 Access: User read/write

0 1 2 3‘4 5 6 7‘8 9 10 11‘12 13 14 15

R
W
Resetoooo\oooo\oooo\oooo

VTBA (most significant 16 bits)

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 290 30 31
R VTBA INTVEC! 0 0
w (least significant 5 bits) | | ‘ | ‘ ‘

Reset 0 0 0 0 ‘ 0 0 0 0 0 0 0 0 0 0 0 0

1. When the VTES bit in INTC_MCR is asserted, INTVEC is shifted to the left one bit. Bit 29 is read as a ‘0’. VTBA
is narrowed to 20 bits in width.

Table 71. INTC_IACKR field descriptions

Field Description

0-20

or Vector Table Base Address

Can be the base address of a vector table of addresses of ISRs. The VTBA only uses the

0-19 leftmost 20 bits when the VTES bit in INTC_MCR is asserted.
VTBA
Interrupt Vector
21-29 It is the vector of the peripheral or software configurable interrupt request that caused the
or interrupt request to the processor. When the interrupt request to the processor asserts, the
20-28 INTVEC is updated, whether the INTC is in software or hardware vector mode.

INTVEC Note: If INTC_MCRI[VTES] = 1, then the INTVEC field is shifted left one position to bits 20—28.
VTBA is then shortened by one bit to bits 0-19.

The interrupt acknowledge register provides a value that can be used to load the address of
an ISR from a vector table. The vector table can be composed of addresses of the ISRs
specific to their respective interrupt vectors.

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must
not be speculatively read while in this mode. The side effects are the same regardless of the
size of the read. Reading the INTC_IACKR does not have side effects in hardware vector
mode.

KYI Doc ID 16912 Rev 5 215/936

Interrupt Controller (INTC)

RMO0046

INTC End-of-Interrupt Register (INTC_EOIR)

Figure 81. INTC End-of-Interrupt Register (INTC_EOIR)
Address Base + 0x0018 Access: Write-only
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Writing to the end-of-interrupt register signals the end of the servicing of the interrupt
request. When the INTC_EOIR is written, the priority last pushed on the LIFO is popped into
INTC_CPR. An exception to this behavior is described in Section , “Hardware vector mode.
The values and size of data written to the INTC_EOIR are ignored. The values and sizes
written to this register neither update the INTC_EOIR contents or affect whether the LIFO
pops. For possible future compatibility, write four bytes of all Os to the INTC_EOIR.
Reading the INTC_EOIR has no effect on the LIFO.
INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-
INTC_SSCIR4_7)
Figure 82. INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIR[0:3])
Address Base + 0x0020 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl 0 0 0 0 0 0 |cLrR| O 0 0 0 0 0 0 |CLR
w SETO| O SET1| 1
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl 0 0 0 0 0 0 0 |cLR| O 0 0 0 0 0 0 |CLR
w SET2| 2 SET3| 3
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
216/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Interrupt Controller (INTC)

Figure 83.

INTC Software Set/Clear Interrupt Register 4-7 (INTC_SSCIR[4:7])
Address Base + 0x0024

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 |cLR| O 0 0 0 0 0 0 |CLR
w SET4| 4 SET5| 5
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 |cLR| O 0 0 0 0 0 0 |CLR
w SET6| 6 SET7| 7
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 72. INTC_SSCIR[0:7] field descriptions
Field Description
6,14, 22, 30 Set' !:Iag Bits . . - .
. Writing a ‘1’ sets the corresponding CLRx bit. Writing a ‘0’ has no effect. Each SETx always will
SET[0:7] “y
bereadasa ‘0.
Clear Flag Bits
7 15 23. 31 CLRx is the flag bit. Writing a ‘1’ to CLRx clears it provided that a ‘1’ is not written simultaneously
’CLE{[O',7] to its corresponding SETx bit. Writing a ‘0’ to CLRx has no effect.
' 0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC

The software set/clear interrupt registers support the setting or clearing of software
configurable interrupt request. These registers contain eight independent sets of bits to set
and clear a corresponding flag bit by software. Excepting being set by software, this flag bit
behaves the same as a flag bit set within a peripheral. This flag bit generates an interrupt
request within the INTC like a peripheral interrupt request. Writing a ‘1’ to SETx will leave
SETx unchanged at 0 but sets CLRx. Writing a ‘0’ to SETx has no effect. CLRx is the flag
bit. Writing a ‘1’ to CLRx clears it. Writing a ‘0’ to CLRx has no effect. If a ‘1’ is written
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of
whether CLRx was asserted before the write.

Doc ID 16912 Rev 5

217/936

Interrupt Controller (INTC)

RMO0046

Figure 84.

INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR220_221)

INTC Priority Select Register 0-3 (INTC_PSR[0:3])
Address Base + 0x0040

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0
PRIO PRI1
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0
PRI2 PRI3
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 85. INTC Priority Select Register 220-221 (INTC_PSR[220:221])

Address Base + 0x011C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R{ O 0 0 0 0 0 0 0
PRI220 PRI221
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 73. INTC_PSRO0_3-INTC_PSR220-221 field descriptions
Field Description
4-7,12-15, 20—
23, 28-31 Priority Select
PRI[0:3]- PRIx selects the priority for interrupt requests. Refer to Section 9.6, “Functional description.
PRI220:221
Table 74. INTC Priority Select Register address offsets
INTC_PSRx_x Offset Address INTC_PSRx_x Offset Address
INTC_PSRO0_3 0x0040 INTC_PSR112_115 0x00B0
INTC_PSR4_7 0x0044 INTC_PSR116_119 0x00B4
INTC_PSR8_11 0x0048 INTC_PSR120_123 0x00B8
INTC_PSR12_15 0x004C INTC_PSR124_127 0x00BC
INTC_PSR16_19 0x0050 INTC_PSR128_131 0x00CO0
INTC_PSR20_23 0x0054 INTC_PSR132_135 0x00C4
INTC_PSR24_27 0x0058 INTC_PSR136_139 0x00C8
218/936 Doc ID 16912 Rev 5 IS7]

RMO0046

Interrupt Controller (INTC)

Table 74. INTC Priority Select Register address offsets (continued)
INTC_PSRx_x Offset Address INTC_PSRx_x Offset Address
INTC_PSR28_31 0x005C INTC_PSR140_143 0x00CC
INTC_PSR32_35 0x0060 INTC_PSR144_147 0x00D0
INTC_PSR36_39 0x0064 INTC_PSR148_151 0x00D4
INTC_PSR40_43 0x0068 INTC_PSR152_155 0x00D8
INTC_PSR44_47 0x006C INTC_PSR156_159 0x00DC
INTC_PSR48_51 0x0070 INTC_PSR160_163 0x00EO
INTC_PSR52_55 0x0074 INTC_PSR164_167 0x00E4
INTC_PSR56_59 0x0078 INTC_PSR168_171 0x00E8
F60_63 0x007C INTC_PSR172_175 0x00EC
INTC_PSR64_67 0x0080 INTC_PSR176_179 0x00F0
INTC_PSR68_71 0x0084 INTC_PSR180_183 O0x00F4
INTC_PSR72_75 0x0088 INTC_PSR184_187 0x00F8
INTC_PSR76_79 0x008C INTC_PSR188_191 0x00FC
INTC_PSR80_83 0x0090 INTC_PSR192_195 0x0100
INTC_PSR84_87 0x0094 INTC_PSR196_199 0x0104
INTC_PSR88_91 0x0098 INTC_PSR200_203 0x0108
INTC_PSR92_95 0x009C INTC_PSR204_207 0x010C
INTC_PSR96_99 0x00AO0 INTC_PSR208_211 0x0110
INTC_PSR100_103 0x00A4 INTC_PSR212_215 0x0114
INTC_PSR104_107 0x00A8 INTC_PSR216_219 0x0118
INTC_PSR108_111 0x00AC INTC_PSR220_221 0x011C
Doc ID 16912 Rev 5 219/936

Interrupt Controller (INTC) RM0046

9.6 Functional description

The functional description involves the areas of interrupt request sources, priority
management, and handshaking with the processor.

Note: The INTC has no spurious vector support. Therefore, if an asserted peripheral or software
settable interrupt request, whose PRIn value in INTC_PSRO-INTC_PSR221 is higher than
the PRI value in INTC_CPR, negates before the interrupt request to the processor for that
peripheral or software settable interrupt request is acknowledged, the interrupt request to
the processor still can assert or will remain asserted for that peripheral or software settable
interrupt request. In this case, the interrupt vector will correspond to that peripheral or
software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral
interrupt request’s enable bit in the peripheral or, alternatively, setting its mask bit has the
same consequences as clearing its flag bit. Setting its enable bit or clearing its mask bit
while its flag bit is asserted has the same effect on the INTC as an interrupt event setting the
flag bit.

Table 75. Interrupt vector table

IRQ # Offset Interrupt Module

On-Platform Peripherals

Software Interrupts

0 0x0800 Software configurable flag 0 Software
1 0x0804 Software configurable flag 1 Software
2 0x0808 Software configurable flag 2 Software
3 0x080C Software configurable flag 3 Software
4 0x0810 Software configurable flag 4 Software
5 0x0814 Software configurable flag 5 Software
6 0x0818 Software configurable flag 6 Software
7 0x081C | Software configurable flag 7 Software
8 0x0820 Reserved
ECSM
9 Platform Flash Bank 0 Abort |

Platform Flash Bank 0 Stall |
Platform Flash Bank 1 Abort |
Platform Flash Bank 1 Stall |
0x0824 Platform Flash Bank 2 Abort | ECSM
Platform Flash Bank 2 Stall |
Platform Flash Bank 3 Abort |

Platform Flash Bank 3 Stall

DMA2x

10 0x0828 Combined Error DMA2x
11 0x082C Channel 0 DMA2x

220/936 Doc ID 16912 Rev 5 KYI

RM0046 Interrupt Controller (INTC)
Table 75. Interrupt vector table (continued)

IRQ # Offset Interrupt Module
12 0x0830 Channel 1 DMA2x
13 0x0834 Channel 2 DMA2x
14 0x0838 Channel 3 DMA2x
15 0x083C Channel 4 DMA2x
16 0x0840 Channel 5 DMA2x
17 0x0844 Channel 6 DMA2x
18 0x0848 Channel 7 DMA2x
19 0x084C | Channel 8 DMA2x
20 0x0850 Channel 9 DMA2x
21 0x0854 Channel 10 DMA2x
22 0x0858 Channel 11 DMA2x
23 0x085C | Channel 12 DMA2x
24 0x0860 Channel 13 DMA2x
25 0x0864 Channel 14 DMA2x
26 0x0868 Channel 15 DMA2x
27 0x086C Reserved

SWT
28 0x0870 Timeout Software Watchdog (SWT)
29 0x0874 Reserved
STM
30 0x0878 Match on channel 0 STM
31 0x087C Match on channel 1 ST™M
32 0x0880 Match on channel 2 ST™M
33 0x0884 Match on channel 3 ST™M
34 0x0888 Reserved
ECSM
35 ECC_DBD_PlatformFlash |
Ox088C | oG DBD_PlatiormRAM ECSM
36 ECC_SBC_PlatformFlash |
0x08%0" | Ecc_sBC_PlatiormRAM ECSM
37 0x0894 Reserved
38 0x0898 Reserved
39 0x089C Reserved
40 0x08A0 Reserved

Doc ID 16912 Rev 5

221/936

Interrupt Controller (INTC)

RMO0046

Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module
SIUL
41 0x08A4 | SIU External IRQ_0 SIUL
42 0x08A8 | SIU External IRQ_1 SIUL
43 0x08AC | SIU External IRQ_2 SIUL
44 0x08B0 SIU External IRQ_3 SIUL
45 0x08B4 Reserved
46 0x08B8 Reserved
47 0x08BC Reserved
48 0x08CO0 Reserved
49 0x08C4 Reserved
50 0x08C8 Reserved
MC_ME
51 0x08CC Safe Mode Interrupt Mode Entry module (MC_ME)
52 0x08D0 Mode Transition Interrupt Mode Entry module (MC_ME)
53 0x08D4 Invalid Mode Interrupt Mode Entry module (MC_ME)
54 0x08D8 Invalid Mode Configuration Mode Entry module (MC_ME)
55 0x08DC Reserved
MC_RGM
56 OX08EQ Functipnal and destructive reset alternate Reset Generation Module (MC_RGM)
event interrupt
XOoscC
57 0x08E4 XOSC counter expired XOSC
PIT
58 Ox08E8 Reserved
59 0x08EC PITimer Channel 0 PIT
60 0x08F0 PITimer Channel 1 PIT
61 0x08F4 PITimer Channel 2 PIT
ADCO
62 0x08F8 |ADC_EOC ADC_0
63 0x08FC |ADC_ER ADC_0
64 0x0900 |ADC_WD ADC_0
FlexCANO
65 0x0904 FLEXCAN_ESR[ERR_INT] FlexCAN_O
222/936 Doc ID 16912 Rev 5 Ky_l

RM0046 Interrupt Controller (INTC)
Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module

66 FLEXCAN_ESR_BOFF |

0x0908 FLEXCAN_Transmit_Warning | FlexCAN_O

FLEXCAN_Receive_Warning
67 0x090C FLEXCAN_ESR_WAK FlexCAN_O
68 0x0910 FLEXCAN_BUF_00_03 FlexCAN_O
69 0x0914 FLEXCAN_BUF_04_07 FlexCAN_O
70 0x0918 FLEXCAN_BUF_08_11 FlexCAN_O
71 0x091C FLEXCAN_BUF_12_15 FlexCAN_O
72 0x0920 FLEXCAN_BUF_16_31 FlexCAN_O
73 0x0924 Reserved
DSPIO

74 DSPI_SR[TFUF

0x0928 DgPl:gR{RFOF]] DSPI_0
75 0x092C DSPI_SR[EOQF] DSPI_0
76 0x0930 DSPI_SR[TFFF] DSPI_0
77 0x0934 DSPI_SR[TCF] DSPI_0
78 0x0938 DSPI_SR[RFDF] DSPI_0

LINFlex0
79 0x093C LINFlex_RXI LINFlex_0
80 0x0940 LINFlex_TXI LINFlex_0O
81 0x0944 LINFlex_ERR LINFlex_0
82 0x0948 Reserved
83 0x094C Reserved
84 0x0950 Reserved
FlexCAN1

85 0x0954 FLEXCAN_ESR[ERR_INT] FlexCAN_1
86 FLEXCAN_ESR_BOFF |

0x0958 FLEXCAN_Transmit_Warning | FlexCAN_1

FLEXCAN_Receive_Warning

87 0x095C FLEXCAN_ESR_WAK FlexCAN_1
88 0x0960 FLEXCAN_BUF_00_03 FlexCAN_1
89 0x0964 FLEXCAN_BUF_04_07 FlexCAN_1
90 0x0968 FLEXCAN_BUF_08_11 FlexCAN_1
91 0x096C FLEXCAN_BUF_12_15 FlexCAN_1
92 0x0970 FLEXCAN_BUF_16_31 FlexCAN_1

Doc ID 16912 Rev 5

223/936

Interrupt Controller (INTC)

RMO0046

Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module
93 0x0974 Reserved
DSPI1
o4 0x0978 BEE::EEEQI::LCJ)?] DSPI_1
95 0x097C | DSPI_SR[EOQF] DSPI_1
96 0x0980 DSPI_SR[TFFF] DSPI_1
97 0x0984 DSPI_SR[TCF] DSPI_1
98 0x0988 DSPI_SR[RFDF] DSPI_1
LINFlex1

99 0x098C | LINFlex_RXI LINFlex_1
100 0x0990 LINFlex_TXI LINFlex_1
101 0x0994 LINFlex_ERR LINFlex_1
102 0x0998 Reserved
103 0x099C Reserved
104 0x09A0 Reserved
105 0x09A4 Reserved
106 0x09A8 Reserved
107 0x09AC Reserved
108 0x09B0 Reserved
109 0x09B4 Reserved
110 0x09B8 Reserved

111 0x09BC Reserved
112 0x09CO0 Reserved
113 0x09C4 Reserved

DSPI2

14 0x09C8 Bgi:::g{;’;g’;]] DSPI_2
115 0x09CC | DSPI_SR[EOQF] DSPI_2
116 0x09D0 | DSPI_SR[TFFF] DSPI_2
117 0x09D4 | DSPI_SR[TCF] DSPI_2
118 0x09D8 | DSPI_SR[RFDF] DSPI_2
119 0x09DC Reserved
120 0x09EO0 Reserved

121 0x09E4 Reserved

224/936 Doc ID 16912 Rev 5 KY_I

RM0046 Interrupt Controller (INTC)
Table 75. Interrupt vector table (continued)

IRQ # Offset Interrupt Module
122 O0x09E8 Reserved
123 0x09EC Reserved
124 0x09F0 Reserved
125 0x09F4 Reserved
126 0x09F8 Reserved

PIT

127 0x09FC PITimer Channel 3 PIT

128 0x0A00 Reserved
129 0x0A04 Reserved
130 0x0A08 Reserved
131 0x0A0C Reserved
132 0x0A10 Reserved
133 O0x0A14 Reserved
134 0x0A18 Reserved
135 0x0A1C Reserved
136 0x0A20 Reserved
137 0x0A24 Reserved
138 0x0A28 Reserved
139 0x0A2C Reserved
140 0x0A30 Reserved
141 0x0A34 Reserved
142 0x0A38 Reserved
143 0x0A3C Reserved
144 0x0A40 Reserved
145 0x0A44 Reserved
146 0x0A48 Reserved
147 0x0A4C Reserved
148 0x0A50 Reserved
149 0x0A54 Reserved
150 0x0A58 Reserved
151 0x0A5C Reserved
152 0x0A60 Reserved
153 0x0A64 Reserved
154 0x0A68 Reserved

Doc ID 16912 Rev 5

225/936

Interrupt Controller (INTC)

RMO0046

Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module

155 0x0A6C Reserved

156 0x0A70 Reserved

eTimer

157 O0x0A74 TCOIR eTimer_0
158 0x0A78 TC1IR eTimer_0
159 0x0A7C |TC2IR eTimer_0
160 0x0A80 TC3IR eTimer_0
161 0x0A84 TC4IR eTimer_0
162 0x0A88 TC5IR eTimer_0
163 0x0A8C Reserved

164 0x0A90 Reserved

165 0x0A94 | WTIF |eTimer_0
166 0x0A98 Reserved

167 0x0A9C | RCF |eTimer_0
168 0x0AAO Reserved

169 0x0AA4 Reserved

170 0x0AA8 Reserved

171 0x0AAC Reserved

172 0x0ABO Reserved

173 0x0AB4 Reserved

174 0x0AB8 Reserved

175 0x0ABC Reserved

176 0x0ACO Reserved

177 0x0AC4 Reserved

178 0x0ACS8 Reserved

FlexPWM

179 0x0ACC RFO FlexPWM_0
180 0x0ADO COFO0 FlexPWM_0
181 0x0AD4 Reserved

182 0x0AD8 RF1 FlexPWM_0
183 0x0ADC |COF1 FlexPWM_0
184 O0x0AEO Reserved

185 Ox0AE4 RF2 FlexPWM_0
186 Ox0AES8 COF2 FlexPWM_0

226/936 Doc ID 16912 Rev 5 Ky_l

RM0046 Interrupt Controller (INTC)
Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module
187 O0XOAEC Reserved
188 0x0AFO RF3 FlexPWM_0
189 O0x0AF4 | COF3 FlexPWM_0
190 Ox0AF8 Reserved
191 OX0AFC | FFLAG FlexPWM_0
192 0x0B00 REF FlexPWM_0
CTuU
193 0x0B04 MRS_|I CTU_O
194 0x0B08 | TO_l CTU_O
195 0x0BOC | T1_l CTU_O
196 0x0B10 T2_| CTU_O
197 0x0B14 T3_I CTU_O
198 0x0B18 T4_| CTU_O
199 0x0B1C | T5_l CTU_O
200 0x0B20 | T6._l CTU_O
201 0x0B24 | T7_l CTU_O
202 0x0B28 FIFO1_l CTU_O
203 0x0B2C FIFO2_I CTU_O
204 0x0B30 FIFO3_I CTU_O
205 0x0B34 FIFO4_l CTU_O
206 0x0B38 |ADC_| CTU_O
207 0x0B3C |ERR_I CTU_O
SafetyPort

208 0x0B40 FLEXCAN_ESR[ERR_INT] SafetyPort (FlexCAN)
209 FLEXCAN_ESR_BOFF |

0x0B44 FLEXCAN_Transmit_Warning | SafetyPort (FlexCAN)

FLEXCAN_Receive_Warning

210 0x0B48 FLEXCAN_ESR_WAK SafetyPort (FlexCAN)
211 0x0B4C |FLEXCAN_BUF_0_3 SafetyPort (FlexCAN)
212 0x0B50 FLEXCAN_BUF_4_7 SafetyPort (FlexCAN)
213 0x0B54 FLEXCAN_BUF_8_11 SafetyPort (FlexCAN)
214 0x0B58 FLEXCAN_BUF_12_15 SafetyPort (FlexCAN)
215 0x0B5C FLEXCAN_BUF_16_31 SafetyPort (FlexCAN)
216 0x0B60 Reserved
217 0x0B64 Reserved

Doc ID 16912 Rev 5

227/936

Interrupt Controller (INTC) RM0046

Table 75. Interrupt vector table (continued)
IRQ # Offset Interrupt Module
218 0x0B68 Reserved
219 0x0B6C Reserved
220 0x0B70 Reserved
221 0x0B74 Reserved
9.6.1 Interrupt request sources
The INTC has two types of interrupt requests, peripheral and software configurable. These
interrupt requests can assert on any clock cycle.
Peripheral interrupt requests
An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral.
The interrupt request from the peripheral is driven by that flag bit.
The time from when the peripheral starts to drive its peripheral interrupt request to the INTC
to the time that the INTC starts to drive the interrupt request to the processor is three clocks.
External interrupts are handled by the SIU (see Section 11.6.4, “External interrupts).
Software configurable interrupt requests
An interrupt request is triggered by software by writing a ‘1’ to a SETx bit in
INTC_SSCIRO_3-INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRXx,
resulting in the interrupt request. The interrupt request is cleared by writing a ‘1’ to the CLRx
bit.
The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt
request to the processor is four clocks.
Unique vector for each interrupt request source
Each peripheral and software configurable interrupt request is assigned a hardwired unique
9-bit vector. Software configurable interrupts 0—7 are assigned vectors 0—7 respectively.
The peripheral interrupt requests are assigned vectors 8 to as high as needed to include all
the peripheral interrupt requests. The peripheral interrupt request input ports at the
boundary of the INTC block are assigned specific hardwired vectors within the INTC (see
Table 67).
9.6.2 Priority management

228/936

The asserted interrupt requests are compared to each other based on their PRIx values set
in INTC Priority Select Registers (INTC_PSRO_3-INTC_PSR220_221). The result is
compared to PRI in the associated INTC_CPR. The results of those comparisons manage
the priority of the ISR executed by the associated processor. The associated LIFO also
assists in managing that priority.

Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 77
compare the priority of the asserted interrupt requests to the current priority. If the priority of

Doc ID 16912 Rev 5 IYI

RMO0046

Interrupt Controller (INTC)

any asserted peripheral or software configurable interrupt request is higher than the current
priority for a given processor, then the interrupt request to the processor is asserted. Also, a
unique vector for the preempting peripheral or software settable interrupt request is
generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware vector
mode, for the interrupt vector provided to the processor.

Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the
asserted interrupt requests assigned to that processor, both peripheral and software
configurable. The output of the priority arbitrator subblock is the highest of those priorities
assigned to a given processor. Also, any interrupt requests that have this highest priority are
output as asserted interrupt requests to the associated request selector subblock.

Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then
it is passed as asserted to the associated vector encoder subblock. If multiple interrupt
requests from the associated priority arbitrator subblock are asserted, only the one with the
lowest vector passes as asserted to the associated vector encoder subblock. The lower
vector is chosen regardless of the time order of the assertions of the peripheral or software
configurable interrupt requests.

Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt
request from the request selector subblock for the associated processor.

Priority comparator subblock

The priority comparator submodule compares the highest priority output from the priority
arbitrator submodule with PRI in INTC_CPR. If the priority comparator submodule detects
that this highest priority is higher than the current priority, then it asserts the interrupt
request to the processor. This interrupt request to the processor asserts whether this
highest priority is raised above the value of PRI in INTC_CPR or the PRI value in
INTC_CPR is lowered below this highest priority. This highest priority then becomes the new
priority that will be written to PRI in INTC_CPR when the interrupt request to the processor
is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not cause a
preemption because their PRIn will not be higher than PRI in INTC_CPR.

Last-in first-out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these
priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the
beginning of the interrupt exception handler the PRI value in the INTC_CPR does not need
to be loaded from the INTC_CPR and stored onto the context stack. Likewise at the end of
the interrupt exception handler, the priority does not need to be loaded from the context
stack and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in
software vector mode or the interrupt acknowledge signal from the processor is asserted in
hardware vector mode. The priority is popped into PRI in the INTC_CPR whenever the
INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal
to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15 priorities.

Doc ID 16912 Rev 5 229/936

Interrupt Controller (INTC) RM0046

9.6.3

Note:

230/936

However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because
of how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is
pushed 15 or more times than it is popped, the priorities first pushed are overwritten. A
priority of O would be an overwritten priority. However, the LIFO will pop Os if it is popped
more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is
regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

Handshaking with processor

Software vector mode handshaking

This section describes handshaking in software vector mode.

Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector
mode and the handshake near the end of the interrupt exception handler, is shown in
Figure 86. The INTC examines the peripheral and software configurable interrupt requests.
When it finds an asserted peripheral or software configurable interrupt request with a higher
priority than PRI in the associated INTC_CPR, it asserts the interrupt request to the
processor. The INTVEC field in the associated INTC_IACKR is updated with the preempting
interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is
asserted. The rest of handshaking process is described in Section, “Software vector mode.

”

End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register
(INTC_EOIR) must be written.When written, the associated LIFO is popped so the
preempted priority is restored into PRI of the INTC_CPR. Before it is written, the peripheral
or software configurable flag bit must be cleared so that the peripheral or software
configurable interrupt request is negated.

To ensure proper operation across all eSys MCUSs, execute an MBAR or MSYNC instruction
between the access to clear the flag bit and the write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or
software settable interrupt request whose ISR was preempted. Depending on how much the
ISR progressed, that interrupt request may no longer even be asserted. When PRI in
INTC_CPR is lowered to the priority of the preempted ISR, the interrupt request for the
preempted ISR or any other asserted peripheral or software settable interrupt request at or
below that priority will not cause a preemption. Instead, after the restoration of the
preempted context, the processor will return to the instruction address that it was to next
execute before it was preempted. This next instruction is part of the preempted ISR or the
interrupt exception handler’s prolog or epilog.

Doc ID 16912 Rev 5 KYI

RM0046 Interrupt Controller (INTC)
Clock AVAVASAVAV L AVAVELAVYAVAVAWA
Interrupt request to processor / - \ ==
Hardware vector enable - - - -

Interrupt vector === 9 - -
Interrupt acknowledge - - - -

Read INTC_IACKR "= j_ \ R

Write INTC_EOIR - - --- /_ '\

INTVEC in INTC_IACKR 0 X === 108 "=
PRI in INTC_CPR 0 .- | R 1 [o
Peripheral interrupt request 100 / "= - - -_\

Figure 86. Software vector mode handshaking timing diagram

Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 87. As in software vector mode, the INTC examines the peripheral and software
settable interrupt requests, and when it finds an asserted one with a higher priority than PRI
in INTC_CPR, it asserts the interrupt request to the processor. The INTVEC field in the
INTC_IACKR is updated with the preempting peripheral or software settable interrupt
request’s vector when the interrupt request to the processor is asserted. The INTVEC field
retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC
field in the INTC_IACKR. The rest of the handshaking is described in” Section , “Hardware
vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the
INTC_EOIR, is the same as in software vector mode. Refer to Section , “End of interrupt
exception handler.

Doc ID 16912 Rev 5 231/936

Interrupt Controller (INTC) RM0046

Olock AVAVAVAWAVAWAWLLAVAVAWAWA
Interrupt request to processor / \ c—--
|Hardware vector enable -

Interrupt vector 0 X 108 .

Interrupt acknowledge [\ N

Read INTC_IACKR ———-

Write INTC_EOIR ——-- /_ \

INTVEC in INTC_IACKR 0 X 108 “—u-

PRI in INTC_CPR 0 { [e=-- 1 [o
Peripheral interrupt request 100 / ===\

Figure 87. Hardware vector mode handshaking timing diagram

9.7 Initialization/application information

9.7.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC Priority Select Registers (INTC_PSR0_3—
INTC_PSR220_221) will be zero, and PRI in INTC current priority register (INTC_CPR) will
be 15. These reset values will prevent the INTC from asserting the interrupt request to the
processor. The enable or mask bits in the peripherals are reset such that the peripheral
interrupt requests are negated. An initialization sequence for allowing the peripheral and
software settable interrupt requests to cause an interrupt request to the processor is:
interrupt_request_initialization:

interrupt request initialization:

configure VTES and HVEN in INTC MCR

configure VTBA in INTC IACKR

raise the PRIn fields in INTC PSRN

set the enable bits or clear the mask bits for the peripheral interrupt

requests

lower PRI in INTC_CPR to zero

enable processor recognition of interrupts

9.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture assembly code.

232/936 Doc ID 16912 Rev 5 IYI

RMO0046

Interrupt Controller (INTC)

Software vector mode

interrupt exception handler:

code to create stack frame, save working register, and save SRRO and SRR1
lis 1r3,INTC IACKR@ha # form adjusted upper half of INTC IACKR address
1wz r3,INTC IACKR@l (r3) # load INTC IACKR, which clears request to

processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC IACKR contents into link register
blrl # branch to ISR; link register updated with epilog
address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor

recognition of interrupts eases the calculation of the maximum stack depth
at the cost of

postponing the servicing of the next interrupt request.

mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC EOIR address
1i r4,0x0 # form 0 to write to INTC_EOIR

wrteei 0 # disable processor recognition of interrupts

stw r4,INTC EOIR@l (r3) # store to INTC EOIR, informing INTC to lower
priority

code to restore SRRO and SRR1, restore working registers, and delete stack
frame

rfi
vector table base address:

address of ISR for interrupt with wvector 0
address of ISR for interrupt with vector 1

address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event

code to clear flag bit that drives interrupt request to INTC

blr # return to epilog
Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations
that support a hardware vector. This example assumes that each

Doc ID 16912 Rev 5 233/936

Interrupt Controller (INTC) RM0046

9.7.3

234/936

interrupt_exception_handlerx only has space for four instructions, and therefore a branch to
interrupt_exception_handler_continuedx is needed.

interrupt exception handlerx:

b interrupt exception handler continuedx# 4 instructions available, branch
to continue

interrupt exception handler continuedx:

code to create stack frame, save working register, and save SRRO and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:

code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor

recognition of interrupts eases the calculation of the maximum stack depth

at the cost of
postponing the servicing of the next interrupt request.

mbar # ensure store to clear flag bit has completed

lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
1i r4,0x0 # form 0 to write to INTC_EOIR

wrteei 0 # disable processor recognition of interrupts

stw r4,INTC EOIR@l (r3) # store to INTC EOIR, informing INTC to lower
priority

code to restore SRRO and SRR1, restore working registers, and delete stack
frame

rfi

ISRx:

code to service the interrupt event

code to clear flag bit that drives interrupt request to INTC
blr # branch to epilog

ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current
priority register (INTC_CPR) having a value of 0. The RTOS will execute the tasks according
to whatever priority scheme that it may have, but that priority scheme is independent and
has a lower priority of execution than the priority scheme of the INTC. In other words, the
ISRs execute above INTC_CPR priority 0 and outside the control of the RTOS, the RTOS
executes at INTC_CPR priority 0, and while the tasks execute at different priorities under
the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared
resource, then the task’s priority can be elevated in the INTC_CPR while the shared
resource is being accessed.

Doc ID 16912 Rev 5 KYI

RM0046 Interrupt Controller (INTC)
An ISR whose PRInin INTC Priority Select Registers (INTC_PSRO_3-INTC_PSR220_221)
has a value of 0 will not cause an interrupt request to the processor, even if its peripheral or
software settable interrupt request is asserted. For a peripheral interrupt request, not setting
its enable bit or disabling the mask bit will cause it to remain negated, which consequently
also will not cause an interrupt request to the processor. Since the ISRs are outside the
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt
exception handler, perhaps after executing another ISR.

9.7.4 Order of execution
An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the
unique vectors associated with each of their peripheral or software configurable interrupt
requests. However, if multiple peripheral or software configurable interrupt requests are
asserted, more than one has the highest priority, and that priority is high enough to cause
preemption, the INTC selects the one with the lowest unique vector regardless of the order
in time that they asserted. However, the ability to meet deadlines with this scheduling
scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 76 shows the order of execution of both ISRs with different priorities
and the same priority

Table 76. Order of ISR execution example

Code Executing at End of Step PRI in
Step L INTC_CPR
Step Description ISR108 | ISR20 | ISR30 | ISR40 | IMEMMUPt | ko of
RTOS ™) 8 8 8 Exception St
Handler ep

1 | RTOS at priority 0 is executing. X 0
Peripheral interrupt request 100 at

2 L X 1
priority 1 asserts. Interrupt taken.
Peripheral interrupt request 400 at

3 L . X 4
priority 4 is asserts. Interrupt taken.
Peripheral interrupt request 300 at

4 L . X 4
priority 3 is asserts.
Peripheral interrupt request 200 at

5 O . X 4
priority 3 is asserts.
ISR408 completes. Interrupt

6 | exception handler writes to X 1
INTC_EOIR.
Interrupt taken. ISR208 starts to

7 | execute, even though peripheral X 3
interrupt request 300 asserted first.
ISR208 completes. Interrupt

8 | exception handler writes to X 1
INTC_EOIR.

9 Interrupt taken. ISR308 starts to X 3
execute.

ﬂ Doc ID 16912 Rev 5 235/936

Interrupt Controller (INTC) RM0046

Table 76. Order of ISR execution example (continued)
Code Executing at End of Step PRI in
Step - INTC_CPR
Step Description ISR108 | ISR20 | ISR30 | ISR40 | IMEMMUPt | Frd of
RTOS ™) 8 8 8 Exception St
Handler ep
ISR308 completes. Interrupt
10 |exception handler writes to X 1
INTC_EOIR.
ISR108 completes. Interrupt
11 | exception handler writes to X 0
INTC_EOIR.
12 | RTOS continues execution. X 0
1. ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt
requests.
9.7.5 Priority ceiling protocol

236/936

Elevating priority

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities
of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to
that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3.
They share the same resource. Before ISR1 or ISR2 can access that resource, they must
raise the PRI value in INTC_CPR to 3, the ceiling of all of the ISR priorities. After they
release the resource, the PRI value in INTC_CPR can be lowered. If they do not raise their
priority, ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting
the shared resource. Another possible failure mechanism is deadlock if the higher priority
ISR needs the lower priority ISR to release the resource before it can continue, but the lower
priority ISR cannot release the resource until the higher priority ISR completes and
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time
when accessing a shared resource that all higher priority interrupts are blocked. For
example, while ISR3 cannot preempt ISR1 while it is accessing the shared resource, all of
the ISRs with a priority higher than 3 can preempt ISR1.

Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1
and ISR2 are both running on the same core and both share a resource. ISR1 has a lower
priority than ISR2. ISR1 is executing and writes to the INTC_CPR. The instruction following
this store is a store to a value in a shared coherent data block. Either immediately before or
at the same time as the first store, the INTC asserts the interrupt request to the processor
because the peripheral interrupt request for ISR2 has asserted. As the processor is
responding to the interrupt request from the INTC, and as it is aborting transactions and
flushing its pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that
it can access the data block coherently, but the data block has been corrupted.

Doc ID 16912 Rev 5 KYI

RMO0046

Interrupt Controller (INTC)

9.7.6

9.7.7

OSEK uses the GetResource and ReleaseResource system services to manage access to
a shared resource. To prevent corruption of a coherent data block, modifications to PRI in
INTC_CPR can be made by those system services with the code sequence:

disable processor recognition of interrupts

PRI modification

enable processor recognition of interrupts

Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling
(RMS) or a superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs that
have higher request rates have higher priorities. In DMS, if the deadline is before the next
time the ISR is requested, then the ISR is assigned a priority according to the time from the
request for the ISR to the deadline, not from the time of the request for the ISR to the next
request for it.

For example, ISR1 executes every 100 ps, ISR2 executes every 200 ps, and ISR3 executes
every 300 ps. ISR1 has a higher priority than ISR2, which has a higher priority than ISR3;
however, if ISR3 has a deadline of 150 ps, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the
ISRs should be grouped with other ISRs that have similar deadlines. For example, a priority
could be allocated for every time the request rate doubles. ISRs with request rates around
1 ms would share a priority, ISRs with request rates around 500 ps would share a priority,
ISRs with request rates around 250 ys would share a priority, etc. With this approach, a
range of ISR request rates of 218 could be included, regardiess of the number of ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines.
However, reducing the number of priorities can reduce the size and latency through the
interrupt controller. It also allows easier management of ISRs with similar deadlines that
share a resource. They do not need to use the PCP to access the shared resource.

Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to
schedule a lower priority portion of an ISR and they may also be used by processors to
interrupt other processors in a multiple processor system.

Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in INTC Priority Select Registers
(INTC_PSRO_3-INTC_PSR220_221), which becomes the PRI value in INTC_CPR with the
interrupt acknowledge. The ISR, however, can have a portion that does not need to be
executed at this higher priority. Therefore, executing the later portion that does not need to
be executed at this higher priority can prevent the execution of ISRs that do not have a
higher priority than the earlier portion of the ISR but do have a higher priority than what the
later portion of the ISR needs. This preemptive scheduling inefficiency reduces the
processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule
through the RTOS a task to execute the later lower priority portion. However, some RTOSs
can require a large amount of time for an ISR to schedule a task. Therefore, a second option
is for the ISR, after completing the higher priority portion, to set a SETx bit in
INTC_SSCIRO_3-INTC_SSCIR4_7. Writing a ‘1’ to SETx causes a software configurable
interrupt request. This software configurable interrupt request will usually have a lower PRIx

Doc ID 16912 Rev 5 237/936

Interrupt Controller (INTC) RM0046

9.7.8

Note:

9.7.9

238/936

value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After
generating a software settable interrupt request, the higher priority ISR completes. The
lower priority ISR is scheduled according to its priority. Execution of the higher priority ISR is
not resumed after the completion of the lower priority ISR.

Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-
processor systems can schedule ISRs on the other processors. One application is that one
processor wants to command another processor to perform a piece of work and the initiating
processor does not need to use the results of that work. If the initiating processor is
concerned that the processor executing the software configurable ISR has not completed
the work before asking it to again execute the ISR, it can check if the corresponding CLRx
bit in INTC_SSCIRx_x is asserted before again writing a ‘1’ to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has
completed accessing a block of data and wants a second processor to then access it.
Furthermore, after the second processor has completed accessing the block of data, the
first processor again wants to access it. The accesses to the block of data must be done
coherently. To do this, the first processor writes a ‘1’ to a SETx bit on the second processor.
After accessing the block of data, the second processor clears the corresponding CLRx bit
and then writes 1 to a SETx bit on the first processor, informing it that it can now access the
block of data.

Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose
work spans multiple priorities (see Section , “Scheduling a lower priority portion of an ISR) is
to lower the current priority. However, the INTC has a LIFO whose depth is determined by
the number of priorities.

Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s corresponding PRI
value in INTC Priority Select Registers (INTC_PSRO_3—-INTC_PSR220_221) allows more
preemptions than the LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to
avoid preemptive scheduling inefficiencies.

Negating an interrupt request outside of its ISR

Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral
interrupt request. For example, reading a specific register can clear the flag bits and their
corresponding interrupt requests. This clearing as a side effect of servicing a peripheral
interrupt request can cause the negation of other peripheral interrupt requests besides the
peripheral interrupt request whose ISR presently is executing. This negating of a peripheral
interrupt request outside of its ISR can be a desired effect.

Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag
bits is because it serviced those flag bits, and therefore the ISRs for these flag bits do not
need to be executed.

Doc ID 16912 Rev 5 KYI

RMO0046

Interrupt Controller (INTC)

9.7.10

Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR
execution or the intentional clearing a flag bit, the priorities of the peripheral or software
configurable interrupt requests for these other flag bits must be selected properly. Their
PRIx values in INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR220_221) must
be selected to be at or lower than the priority of the ISR that cleared their flag bits.
Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to
the writing to INTC_SSCIR0O_3—-INTC_SSCIR4_7 as the clearing of the flag bit that caused
the present ISR to be executed (see Section , “End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be
cleared at any time, regardless of the peripheral interrupt request’s PRIx value in
INTC_PSRx_x.

Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even
know how deeply the LIFO is nested. However, if he wants to read the contents, such as in
debug mode, they are not memory mapped. The contents can be read by popping the LIFO
and reading the PRI field in either INTC_CPR. The code sequence is:

pop_1lifo:

store to INTC_EOIR

load INTC_CPR, examine PRI, and store onto stack

if PRI is not zero or value when interrupts were enabled, branch to

pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push lifo:
load stacked PRI value and store to INTC_CPR
load INTC_ IACKR
if stacked PRI values are not depleted, branch to push lifo

Doc ID 16912 Rev 5 239/936

System Status and Configuration Module (SSCM)

RMO0046

10

10.1

10.1.1

10.1.2

240/936

System Status and Configuration Module (SSCM)

Introduction

Overview

The System Status and Configuration Module (SSCM), pictured in Figure 88, provides
central device functionality.

System Status and Configuration Module

Core
——- Logic
]
System
Status
D

RevID
Hardmacro

!

Bus
Interface

#

Password
Comparator

—

Figure 88. SSCM block diagram

Features

The SSCM includes these features:
® System configuration and status

Memory sizes/status

Device mode and security status
Determine boot vector

Search Code Flash for bootable sector
DMA status

® Debug status port enable and selection
® Bus and peripheral abort enable/disable

Doc ID 16912 Rev 5

Peripheral
Bus
Interface

RMO0046 System Status and Configuration Module (SSCM)

10.1.3 Modes of operation

The SSCM operates identically in all system modes.

10.2 Memory map and register description

This section provides a detailed description of all memory-mapped registers in the SSCM.

10.2.1 Memory map

Table 77 shows the memory map for the SSCM. Note that all addresses are offsets; the
absolute address may be calculated by adding the specified offset to the base address of

the SSCM.
Table 77. SSCM memory map
Offset from
SSCM_BASE Register Location
(0xC3FD_8000)
0x0000 STATUS—System Status register on page 10-242
0x0002 MEMCONFIG—System Memory Configuration register on page 10-243
0x0004 Reserved (Reads/Writes have no effect)
0x0006 ERROR—Error Configuration register on page 10-244
0x0008 DEBUGPORT—Debug Status Port register on page 10-245
0x000A Reserved (Reads/Writes have no effect)
0x000C PWCMPH—Password Comparison High Word register on page 10-246
0x0010 PWCMPL—Password Comparison Low Word register on page 10-246
0x0014-0x3FFF | Reserved

All registers are accessible via 8, 16 or 32-bit accesses. However, 16-bit accesses must be
aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As
an example, the MEMCONFIG register is accessible by a 16-bit read/write to address Base
+ 0x0002, but performing a 16-bit access to Base + 0x0003 is illegal.

10.2.2 Register description

Each description includes a standard register diagram. Details of register bit and field
function follow the register diagrams, in bit order. The numbering convention of the registers
is MSB = 0, however the numbering of the internal fields is LSB = 0, for example, register
SSCM_STATUS[8] = BMODE[2].

1 0 BIT , , BIT| self-| O
Always Always R/W Read- Write- Write 1
.| BIT . . wi clear N/A
reads 1 reads 0 bit only bit only bit | g|T | to clear bit | BIT
c

Figure 89. Key to register fields

K‘YI Doc ID 16912 Rev 5 241/936

System Status and Configuration Module (SSCM)

RMO0046

System Status register (STATUS)

The system status register is a read-only register that reflects the current state of the

system.

Figure 90. Status (STATUS) register

Address: Base + 0x0000

Access: Read-only

0 1 4 5 6 8 9 10 11 12 13 14 15
zZ
Rl 0 0 % |PUB|SEC BMODE[2:0] 0 |ABD| O 0 0
Z
W
RESET: 0 0 0 0 0 0 1 1 0 0 0 0 0

Table 78. STATUS allowed register accesses
Access width
Access type
8-bit 16-bit 32-bit("
Read Allowed Allowed Allowed
Write Not allowed Not allowed Not allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, Ox4, 0x8, or 0xC).

Table 79.

STATUS field descriptions

Field

Description

NXEN

Nexus enabled

PUB

Public Serial Access Status

This bit indicates whether serial boot mode with public password is allowed.

1: Serial boot mode with public password allowed

0: Serial boot mode with private Flash password allowed, provided the key has not been swallowed

SEC

Security Status

This bit reflects the current security state of the Flash.
1: Flash secured

0: Flash not secured

BMODE
[2:0]

Device Boot Mode

000: TestFlash

001: CAN Serial Boot Loader

010: SCI Serial Boot Loader

011: Single Chip

100-111: Reserved

This field is updated only during reset.

ABD

Autobaud
Indicates that autobaud detection is active when in SCI or CAN serial boot loader mode. No meaning in
other modes.

242/936

574

Doc ID 16912 Rev 5

RMO0046 System Status and Configuration Module (SSCM)
System Memory Configuration register (MEMCONFIG)
The system memory configuration register is a read-only register that reflects the memory
configuration of the system.
Figure 91. System memory configuration (MEMCONFIG) register
Address: Base + 0x0002 Access: Read-only
0 1 2 3‘4 5 6 7‘8 9 10 11‘12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 |IVLD| O 0 0 0 |DVLD
we |] [
Resst 0 0 o0 o]0 o o0 ©0/ 0 o0 o0 0[O0 0 o0 O
Table 80. MEMCONFIG field descriptions
Field Description
CFlash Valid
This bit identifies whether or not the on-chip CFlash is accessible in the system memory map. The Flash
may not be accessible due to security limitations.
1: CFlash accessible
IVLD
0: CFlash not accessible
Note: This is a status bit only and writing to this bit does not enable the CFlash if it has been disabled
due to specific mode of operation.
DFlash Valid
This bit identifies whether or not the on-chip DFlash is visible in the system memory map. The Flash may
not be accessible due to security limitations.
1: DFlash visible
DVLD 0: DFlash not visible
Note: This is a status bit only and writing to this bit does not enable the CFlash if it has been disabled
due to specific mode of operation.
Table 81. MEMCONFIG allowed register accesses
Access width
Access type
8-bit 16-bit 32-bit
Allowed
Read Allowed Allowed (also reads STATUS
register)
Write Not allowed Not allowed Not allowed
1S7 Doc ID 16912 Rev 5 243/936

System Status and Configuration Module (SSCM) RMO0046

Error Configuration (ERROR) register

The Error Configuration register is a read-write register that controls the error handling of
the system.

Figure 92. Error Configuration (ERROR) register

Address: Base + 0x0006 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R{ O 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE | RAE
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 82. ERROR field descriptions
Field Description

Peripheral Bus Abort Enable

This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This feature
PAE is intended to aid in debugging when developing application code.

1: lllegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception.

0: lllegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception.

Register Bus Abort Enable

This bit enables bus aborts on illegal accesses to off-platform peripherals. lllegal accesses are defined

RAE as read§ or writes to re.selrved addrgsses within the a'ddress space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.

1: lllegal accesses to peripherals produce a Prefetch or Data Abort exception.

0: lllegal accesses to peripherals do not produce a Prefetch or Data Abort exception.

Note: Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral
Bus (i.e., at the PRIDGE level). In this case, the PAE and RAE register bits will have no

effect on the abort.

Table 83. ERROR allowed register accesses

Access width
Access type
8-bit 16-bit 32-bit
Read Allowed Allowed Allowed
Write Allowed Allowed Not allowed

244/936 Doc ID 16912 Rev 5

RMO0046

System Status and Configuration Module (SSCM)

Debug Status Port (DEBUGPORT) register

The Debug Status Port register provides debug data on a set of pins.

Figure 93. Debug Status Port (DEBUGPORT) register
Address: Base + 0x0008

0

1

2

Access: User read/write

12

13 14 15

R| O

0

0

W

DEBUG_MODE
[2:0]

Reset 0

Table 84.

0

DEBUGPORT field descriptions

0 0 0

Field

Description

13-15

DEBUG_MODE[2:0]

Debug Status Port Mode
This field selects the alternate debug functionality for the Debug Status Port.

000:
001:
010:
011:
100:
101:
110:
111:

No alternate functionality selected

Mode 1 selected
Mode 2 selected
Mode 3 selected
Mode 4 selected
Mode 5 selected
Mode 6 selected
Mode 7 selected

Table 85 describes the functionality of the Debug Status Port in each mode.

Table 85. Debug Status Port modes

'?1';1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7
0 |[STATUS|[0]| STATUS[8] | MEMCONFIG[0] | MEMCONFIG[8] | Reserved Reserved Reserved
1 | STATUS[1]| STATUS[9] | MEMCONFIG[1] | MEMCONFIG[9] | Reserved Reserved Reserved
2 | STATUS[2] | STATUS[10] | MEMCONFIG[2] | MEMCONFIG[10] | Reserved Reserved Reserved
3 | STATUS[3] | STATUS[11] | MEMCONFIG[3] | MEMCONFIG[11]| Reserved Reserved Reserved
4 | STATUS[4] | STATUS[12] | MEMCONFIG[4] | MEMCONFIG[12] | Reserved Reserved Reserved
5 | STATUS[5] | STATUS[13] | MEMCONFIG[5] | MEMCONFIG[13] | Reserved Reserved Reserved
6 | STATUS[6] | STATUS[14] | MEMCONFIG[6] | MEMCONFIG[14]| Reserved Reserved Reserved
7 | STATUS[7] | STATUS[15] | MEMCONFIG[7] | MEMCONFIG[15]| Reserved Reserved Reserved

1. All signals are active high, unless otherwise noted

K‘YI Doc ID 16912 Rev 5 245/936

System Status and Configuration Module (SSCM) RMO0046
Table 86. DEBUGPORT allowed register accesses
Access width
Access type
8-bit 16-bit 32-bit("
Read Allowed Allowed Not allowed
Write Allowed Allowed Not allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Password comparison registers

These registers allow to unsecure the device, if the correct password is known.

Figure 94. Password Comparison Register High Word (PWCMPH) register
Address: Base + 0x000C

Access: User read/write

o 1 2 3 | 4 5 6 7 | 8 9 10 11 12 13 14 15
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o
W PWD_HI[31:16]
Resetoooo\oooo\oooo\oooo

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o

W PWD_HI[15:0]

Reset 0 0 O o\oo

o
o

Figure 95. Password Comparison Register Low Word (PWCMPL) register
Address: Base + 0x0010

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o
w PWD_LO[31:16]
Resetoooo\oooo\oooo\oooo
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o
w PWD_LO[15:0]
Resetoooo\oooo\oooo\oooo
Table 87. PWCMPHI/L field descriptions
Field Description
PWD_HI[31:0] Upper 32 bits of the password
PWD_LO[31:0] Lower 32 bits of the password
246/936 Doc ID 16912 Rev 5 KYI

RMO0046

System Status and Configuration Module (SSCM)

Table 88. PWCMPHY/L allowed register accesses

Access type

Access width

8-bit 16-bit 32-bit("
Read Allowed Allowed Allowed
Write Not allowed Not allowed Allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

10.3 Functional description

The primary purpose of the SSCM is to provide information about the current state and
configuration of the system that may be useful for configuring application software and for

debug of the system.

10.4 Initialization/application information

10.4.1 Reset

The reset state of each individual bit is shown in Section 10.2.2, “Register description.

Doc ID 16912 Rev 5

247/936

System Integration Unit Lite (SIUL) RMO0046

11

11.1

11.2

248/936

System Integration Unit Lite (SIUL)

Introduction

This chapter describes the System Integration Unit Lite (SIUL), which is used for the
management of the pads and their configuration. It controls the multiplexing of the alternate
functions used on all pads and is responsible for managing the external interrupts to the
device.

Overview

The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-
purpose input and output (GPIO) signals and external interrupts with trigger event
configuration. Figure 96 is a block diagram of the SIUL and its interfaces to other system
components.

The module provides dedicated general-purpose pads that can be configured as either
inputs or outputs. When configured as an output, you can write to an internal register to
control the state driven on the associated output pad. When configured as an input, you can
detect the state of the associated pad by reading the value from an internal register. When
configured as an input and output, the pad value can be read back, which can be used a
method of checking if the written value appeared on the pad.

Doc ID 16912 Rev 5 KYI

RMO0046 System Integration Unit Lite (SIUL)
SIUL Module
Pad Configuration (IOMUXC)
69
» Pad Config (PCRs)
GPIO Functionality
64 A 4 A
< > Data » 10 Pads
MUX
64 64
< Pad Input <
IPS
Master _|
Interrupt Functionality
25 Interrupt
< Controller
» Interrupt
— Configuration | 4
— Glitch Filter
IPS
BUS
Figure 96. System Integration Unit Lite block diagram
11.3 Features
The System Integration Unit Lite provides these features:
e GPIO
— GPIO function on up to 64 1/O pins
— Dedicated input and output registers for each GPIO pin
® External interrupts
— 4 system interrupt vectors for up to 25 interrupt sources
— 25 programmabile digital glitch filters
— Independent interrupt mask
— Edge detection
® System configuration
— Pad configuration control
'] Doc ID 16912 Rev 5 249/936

System Integration Unit Lite (SIUL) RMO0046

11.3.1

11.4

Table 89.

Register protection

Most of the configuration registers of the System Integration Unit Lite are protected from
accidental writes, see Appendix A: Registers Under Protection.

External signal description

The pad configuration allows flexible, centralized control of the pin electrical characteristics
of the MCU with the GPIO control providing centralized general purpose 1/O for an MCU that
multiplexes GPIO with other signals at the I/O pads. These other signals, or alternate
functions, will normally be the peripherals functions. The internal multiplexing allows user
selection of the input to chip-level signal multiplexers. Each GPIO port communicates via 16
I/O channels. In order to use the pad as a GPIO, the corresponding Pad Configuration
Registers (PCR[0:71]) for all pads used in the port must be configured as GPIO rather than
as the alternate pad function.

Table 89 lists the external pins used by the SIUL.

SIUL signal properties

GPIO category Name 1/0 direction Function

System configuration

GPIOI[0:19],
GPIO[22], Input/Output | General-purpose input/output
GPIO[35:62]

GPIO[23:34],
GPIO[63], Input Analog precise channel pins
GPI0O[65:66]

External interrupt EIRQ[0:24] Input Please refer to the signal description chapter of this

Pins with External Interrupt Request functionality.

reference manual for details.

11.4.1

250/936

Detailed signal descriptions

General-purpose I/0 pins (GPIO[0:66])

The GPIO pins provide general-purpose input and output function. The GPIO pins are
generally multiplexed with other I/O pin functions. Each GPIO input and output is separately
controlled by an input (GPDIn_n) or output (GPDOn_n) register.

See Section , “GPIO Pad Data Output registers 0_3-68_71 (GPDO[0_3:68_71]) and
Section , “GPIO Pad Data Input registers 0_3—68_71 (GPDI[0_3:68_71]).

External interrupt request input pins (EIRQ[0:24])

The EIRQ[0:24] are connected to the SIUL inputs. Rising or falling edge events are enabled
by setting the corresponding bits in the “n” SIUL_IREER or the SIUL_IFEER register. See
Section , “Interrupt Rising-Edge Event Enable Register (IREER) and Section , “Interrupt
Falling-Edge Event Enable Register (IFEER).

Doc ID 16912 Rev 5 KYI

RMO0046 System Integration Unit Lite (SIUL)
11.5 Memory map and register description

This section provides a detailed description of all registers accessible in the SIUL module.
11.5.1 SIUL memory map

Table 90 lists the SIUL registers.

Table 90.

SIUL memory map

Offset from
SIUL_BASE
(0xC3F9_0000)

Register

Location

0x0000—-0x0003

Reserved

0x0004 MCU ID Register #1 (MIDR1) on page 11-252

0x0008 MCU ID Register #2 (MIDR2) on page 11-254
0x000C—-0x0013 | Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 11-255

0x0018 Interrupt Request Enable Register (IRER) on page 11-255
0x001C-0x0027 | Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 11-256

0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 11-256

0x0030 Interrupt Filter Enable Register (IFER) on page 11-257

0x0034-0x003F

Reserved

0x0040-0x00CE

Pad Configuration Registers (PCR[0:71])

on page 11-257

0x00D0-0x04FF

Reserved

0x0500-0x0520

Pad Selection for Multiplexed Inputs registers
(PSMI[0_3:32_35])

on page 11-259

0x0524—-0x05FF

Reserved

0x0600-0x0644

GPIO Pad Data Output registers 0_3-68_71
(GPDO[0_3:68_71])

on page 11-262

0x0648-0x07FF

Reserved

0x0800-0x0844

GPIO Pad Data Input registers 0_3-68_71
(GPDI[0_3:68_71])

on page 11-262

0x0848-0x0BFF

Reserved

0x0C00-0x0C0C

Parallel GPIO Pad Data Out register 0-3 (PGPDO[0:3])

on page 11-263

0x0C10-0x0C3F

Reserved

0x0C40-0x0C4C

Parallel GPIO Pad Data In register 0-3 (PGPDI[0:3])

on page 11-263

0x0C50-0x0C7F

Reserved

0x0C80-0x0C98

Masked Parallel GPIO Pad Data Out register 0-6
(MPGPDO[0:6])

on page 11-264

0x0C9C—OxOFFF

Reserved

Doc ID 16912 Rev 5

251/936

System Integration Unit Lite (SIUL) RMO0046
Table 90. SIUL memory map (continued)
Offset from
SIUL_BASE Register Location

Note:

11.5.2

Always
reads 1

(0xC3F9_0000)

0x1000-0x1060

Interrupt Filter Maximum Counter registers 0—24 (IFMC[0:24])

on page 11-265

0x1064—0x107C

Reserved

0x1080

Interrupt Filter Clock Prescaler Register (IFCPR)

on page 11-266

0x1084—-0x3FFF

Reserved

A transfer error will be issued when trying to access completely reserved register space.

Register description

This section describes in address order all the SIUL registers. Each description includes a
standard register diagram. Details of register bit and field function follow the register
diagrams, in bit order. The numbering convention of register is MSB = 0, however the
numbering of internal field is LSB = 0, for example PARTNUM[5] = MIDR1[10].

Always

reads 0

R/W bit

BIT

Read-
only bit

BIT

BIT

Write-

only bit

BIT

Write 1
to clear

wic

Self-

clear bit N/A

BIT

Figure 97. Key to register fields

MCU ID Register #1 (MIDR1)

This register contains the part number and the package ID of the device.

Figure 98. MCU ID Register #1 (MIDR1)

Address: Base + 0x0004

R
w
Reset

R
w
Reset

Access: User read-only

0 1 2 10 13 14 15
PARTNUM[15:0]
]]]]
0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0
16 17 18 19 ‘ 20 21 22 23 24 25 26 27 28 29 30 31
CSP PKG[4:0] 0 0 MAJOR_MASK][3:0]" MINOR_MASK][3:0]"
| |]]
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1. See Table 91.

252/936

Doc ID 16912 Rev 5

RMO0046

System Integration Unit Lite (SIUL)

Table 91. MIDRT1 field descriptions

Field

Description

PARTNUM[15:0]

MCU Part Number

Device part number of the MCU.
0101_0110_0000_0001: 192 KB
0101_0110_0000_0010: 256 KB
0101_0110_0000_0011: 320/384 KB

For the full part number this field needs to be combined with MIDR2.PARTNUM[23:16]

CSP Always reads back 0
Package Settings
PKG[4:0] Can by read by software to determine the package type that is used for the particular device:

00001: 64-pin LQFP
01001: 100-pin LQFP

MAJOR_MASK]3:0]

Major Mask Revision
Counter starting at 0x0. Incremented each time a resynthesis is done.

MINOR_MASK(3:0]

Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.

Doc ID 16912 Rev 5 253/936

System Integration U

nit Lite (SIUL) RM0046

MCU ID Register #2 (MIDR2)

This register contains additional configuration information about the device.

Figure 99. MCU ID Register #2 (MIDR2)

Address: Base + 0x0008

0 1

Access: User read-only

©
_
o
-
_
—_
N
_
w

2 3‘4 5 6 7 8 14 15

R| SF FLASH_SIZE[3:0] 0 0 0 0 0 0 0 0 0 0 0

w |

1 0 0 0 0 0 0 0 0 0 0 0 0 0

18 19 ‘ 20 21 22 23 24 25 26 27 28 29 30 31

PARTNUM[23:16] 0 0 0 EE 0 0 0 0

Reset 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 92. MIDR2 field descriptions

Field Description
Manufacturer
SF 0: Reserved
1: ST

FLASH_SIZE[3:0]

Coarse granularity for Flash memory size

Needs to be combined with FLASH_SIZE_2 to calculate the actual memory size.
0011: 192 KB

0100: 256 KB

Other values are reserved.

PARTNUM[23:16]

ASCII character in MCU Part Number
0x50: P family (Steering)

EE

Data Flash present
0: No Data Flash present
1: Data Flash present

254/936

Doc ID 16912 Rev 5 KYI

RMO0046 System Integration Unit Lite (SIUL)

Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

Figure 100. Interrupt Status Flag Register (ISR)

Address: Base + 0x0014 Access: User read/write
0 1 2 3 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R EIF[24:16]
W wic
Reset 0 0 o0 o]0 o o0 o0/0 o0 o0 0[O0 0 o0 O

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

R EIF[15:0]
w wic
Resetoooo\oooo\oooo\oooo
Table 93. ISR field descriptions
Field Description

External Interrupt Status Flag n

This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRERn), EIFn
EIFn causes an interrupt request.

0: No interrupt event has occurred on the pad.
1: An interrupt event as defined by IREERn and IFEERn has occurred.

Interrupt Request Enable Register (IRER)

This register enables the interrupt messaging to the interrupt controller.

Figure 101. Interrupt Request Enable Register (IRER)

Address: Base + 0x0018 Access: User read/write
0 1 2 3 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R
IRE[24:16]
w
Resetoooooooo\oooo\oooo

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

R
W
Resetoooo\oooo\oooo\oooo

IRE[15:0]

Table 94. IRER field descriptions

Field Description

External Interrupt Request Enable n
IREn 0: Interrupt requests from the corresponding EIFn bit are disabled.
1: A set EIFn bit causes an interrupt request.

K‘YI Doc ID 16912 Rev 5 255/936

System Integration Unit Lite (SIUL)

RM0046

Interrupt Rising-Edge Event Enable Register (IREER)

This register allows rising-edge triggered events to be enabled on the corresponding

interrupt pads.

Figure 102. Interrupt Rising-Edge Event Enable Register (IREER)

Address: Base + 0x0028

0 1 234567‘89

Access: User read/write

10 11 ‘ 12 13 14 15

R
w

IREE[24:16]

Resetoooooooo\oo

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25

26 27 ‘ 28 29 30 31

R

IREE[15:0]
W

Reset 0 0 0 o\o 0 0 o\o 0

Table 95. IREER field descriptions

Field Description

IREEn 0: Rising-edge event disabled
1: Rising-edge event enabled

Enable rising-edge events to cause the EIFn bit to be set.

Interrupt Falling-Edge Event Enable Register (IFEER)

This register allows falling-edge triggered events to be enabled on the corresponding

interrupt pads.

Figure 103. Interrupt Falling-Edge Event Enable Register (IFEER)

Address: Base + 0x002C

Access: User read/write

10 11 ‘ 12 13 14 15

IFEE[24:16]

Resetoooooooo\oo

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25

IFEE[15:0]

Reset 0 0 0 o\o 0 0 o\o 0

Table 96. IFEER field descriptions

Field Description

IFEEn 0: Falling-edge event disabled
1: Falling-edge event enabled

Enable falling-edge events to cause the EIFn bit to be set.

256/936 Doc ID 16912 Rev 5

RMO0046

System Integration Unit Lite (SIUL)

Note:

interrupt status flag for the corresponding external interrupt will never be set.

Interrupt Filter Enable Register (IFER)

If both the IREER.IREE and IFEER.IFEE bits are cleared for the same interrupt source, the

This register enables a digital filter counter on the corresponding interrupt pads to filter out

glitches on the inputs.

Figure 104. Interrupt Filter Enable Register (IFER)

Address: Base + 0x0030

Access: User read/write

10 11 ‘ 12

0 1 2 3 4 5 6 9 13 14 15
R
IFE[24:16]
w
Resetoooooooo\oooo\oooo
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R
IFE[15:0]
w
Resetoooo\oooo\oooo\oooo
Table 97. IFER field descriptions
Field Description
Enable digital glitch filter on the interrupt pad input.
IFEn 0: Filter disabled
1:Filter enabled

Pad Configuration Registers (PCR[0:71])

The Pad Configuration Registers allow configuration of the static electrical and functional
characteristics associated with 1/0 pads. Each PCR controls the characteristics of a single

pad.

Figure 105. Pad Configuration Registers 0—-71 (PCR[0:71])

Base + 0x0040 (PCRO)

Address: ... Access: User read/write
Base + 0x00CE (PCR71) 72 registers
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| 0 0 0 0
W SMC | APC PA[1:0] |OBE | IBE ODE SRC | WPE | WPS
Reset) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. See Table 99.

Note:

Doc ID 16912 Rev 5

16/32-bit access is supported for the PCR[0:71] registers.

257/936

System Integration Unit Lite (SIUL) RMO0046

Table 98. PCR[0:71] field descriptions
Field Description
Safe Mode Control
This bit supports the overriding of the automatic deactivation of the output buffer of the
SMC associated pad upon entering Safe mode of the device.
0: In Safe mode, output buffer of the pad disabled
1: In Safe mode, output buffer remains functional
Analog Pad Control
APC This bit enables the usage of the pad as analog input.
0: Analog input path from the pad is gated and cannot be used.
1: Analog input path switch can be enabled by the ADC.
Pad Output Assignment
This field selects the function that is allowed to drive the output of a multiplexed pad.The PA field
size can vary from 0 to 2 bits, depending on the number of output functions associated with this
pad.
PA[1:0] 00: Alternative mode 0: GPIO
01: Alternative mode 1 (see Chapter 3: Signal Description)
10: Alternative mode 2 (see Chapter 3: Signal Description)
11: Alternative mode 3 (see Chapter 3: Signal Description)
The number of bits in the PA bitfield depends of the number of actual alternate functions provided for
each pad. Please see the SPC560P40/34 Datasheet (SPC560P40/34).
Output Buffer Enable
OBE This bit enables the output buffer of the pad in case the pad is in GPIO mode.
0: Output buffer of the pad disabled when PA = 00
1: Output buffer of the pad enabled when PA = 00
Input Buffer Enable
IBE This bit enables the input buffer of the pad.
0: Input buffer of the pad disabled
1: Input buffer of the pad enabled
Open Drain Output Enable
This bit controls output driver configuration for the pads connected to this signal. Either open
ODE drain or push/pull driver configurations can be selected. This feature applies to output pads only.
0: Open drain enable signal negated for the pad
1: Open drain enable signal asserted for the pad
Slew Rate Control
SRC 0: Slowest configuration
1: Fastest configuration
Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
WPE connected to this signal.
0: Weak pull device enable signal negated for the pad
1: Weak pull device enable signal asserted for the pad
Weak Pull Up/Down Select
This bit controls whether weak pull up or weak pull down devices are used for the pads
WPS connected to this signal when weak pull up/down devices are enabled.
0: Pull down enabled
1: Pull up enabled
258/936 Doc ID 16912 Rev 5 IS7]

RMO0046 System Integration Unit Lite (SIUL)

Table 99. PCR[n] reset value exceptions

Field Description
PCR[2]) . . .
PCR[3] These registers correspond to the ABS[0], ABS[1], and FAB boot pins, respectively. Their default
state is input, pull enabled. Their reset value is 0x0102.
PCRI[4]
This register corresponds to the TDO pin. Its default state is ALT1, slew rate = 1. Its reset value is
PCRI20] 0x0604.
PCR[21] This register corresponds to the TDI pin. Its default state is input, pull enabled, pull selected,
slew enabled. So its reset value is 0x0107.
PCRIn] For other PCR([n] registers, the reset value is 0x0000.

In addition to the bit map above, the following Table 100 [PCR bit implementation by pad
type] describes the PCR depending on the pad type (refer to Section 3.3.3: Pin multiplexing
for pad types description). The bits in shaded fields are not implemented for the particular
I/O type. The PA field selecting the number of alternate functions may or may not be present
depending on the number of alternate functions actually mapped on the pad.

Table 100. PCR bit implementation by pad type

PCR bit No.

Pad type
0 1 2 3 4 5 6 7 8|9)| 10 |11 |12 13 14 15

S, M, F (Pad
with GPIO
and digital SMC | APC PA [1:0] OBE | IBE ODE SRC | WPE |WPS
alternate
functionality)

| (Pad with
GPIO and
analog
functionality)

SMC | APC PA[1:0] |OBE |IBE ODE SRC | WPE | WPS

Pad Selection for Multiplexed Inputs registers (PSMI[0_3:32_35])

The purpose of the PSMI[0_3:32_35] registers is to allow connecting a single input pad to
one of several peripheral inputs. Thus, it is possible to define different pads to be possible
inputs for a certain peripheral function.

K‘YI Doc ID 16912 Rev 5 259/936

System Integration Unit Lite (SIUL) RMO0046

Figure 106. Pad Selection for Multiplexed Inputs registers (PSMI[0_3:32_35])

Base + 0x0500 (PSMIO_3)

Base + 0x0504 (PSMI4_7)
Address: Base + 0x0508 (PSMI8_11)

Base + 0x050C (PSMI12_15)

Base + 0x0514 (PSMI20_23)
Base + 0x0518 (PSMI024_27)
Base + 0x051C (PSMI28_31)
Base + 0x0520 (PSMI32_35)

Access: User read/write

Base + 0x0510 (PSMI16_19)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl 0 0 0 0 0 0 0 0
W PADSELO[3:0] PADSEL1[3:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PADSEL2[3:0] PADSELS3[3:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 101. PSMI[0_3:32_35] field descriptions

Field Description

PADSELO-3 |Pad Selection Bits

Each PADSEL field selects the pad currently used for a certain input function. See Table 102 Pad
PADSEL32-35 |selection.

Table 102. Pad selection

. LQFP pin
Register PADSEL Module Port PA\E);E:([F;.O] Port name
u 64-pin | 100-pin

0000 C[13] — 71
PADSELO ctuo EXT_IN

0001 C[15] — 85

0000 A[0] — 51
PADSELA1 dspi2 SCK

0001 A[11] 53 82

PSMI0_3()

0000 Al2] — 57
PADSEL2 dspi2 SIN

0001 A[13] 61 95

0000 A[3] 41 64
PADSEL3 dspi2 CS0

0001 A[10] 52 81
PADSELO — — — — — —
PADSEL1 — — — — — —
PADSEL2 — — — — — —

PSMI4_70)

0000 Al4] 48 75
PADSEL3 eTimer0 ETC[4] 0001 C[11] 33 55

0010 B[14] — 44

260/936 Doc ID 16912 Rev 5 KYI

RMO0046

System Integration Unit Lite (SIUL)

Table 102. Pad selection (continued)

. LQFP pin
Register PADSEL Module Port PA‘?aSIE:(EQ;'O] Port name
64-pin | 100-pin
0000 C[12] 34 56
PADSELO eTimer0 ETC[5]
0001 BI[8] 22 31
PSMI8_112 | PADSELT1 — — — — — —
PADSEL2 — — — — — —
PADSEL3 — — — — — —
PADSELO — — — — — —
PADSELA1 — — — — — —
PSMI12_15% | PADSEL2 — — — — — —
0000 C[13] — 71
PADSEL3 flexpwmO EXT_SYNC
0001 C[15] — 85
0000 A[9] 60 94
PADSELO flexpwmO FAULTO
0001 A[13] 61 95
0000 C[10] — 78
PSMI16_19% | PADSELA1 flexpwmO FAULTA
0001 D[6] — 23
PADSEL2 — — — — — —
PADSEL3 — — — — — —
PADSELO — — — — — —
PADSELA1 — — — — — —
PSMI20_23
PADSEL2 — — — — — —
PADSEL3 — — — — — —
PADSELO — — — — — —
PADSEL1 — — — — — —
PSMI24_27
PADSEL2 — — — — — —
PADSEL3 — — — — — —
PADSELO — — — — — —
PADSELA1 — — — — — —
PSMI28_312 | PADSEL2 — — — — — —
- i 0000 BI[3] — 80
PADSEL3 LiNflexo | HXD—Receive
Data Input Line 0001 B[7] 20 29
— i 0000 B[13] 30 42
PSMI32_35% | PADSELO LiNflex1 | HXD—Receive
Data Input Line 0001 D[12] 45 70
1. Values not listed are reserved.
2. Writing to PADSELX[3:1] has no effect—a write to these three bits will return ‘0’.
3. Writing to PADSELX[3:2] has no effect—a write to these two bits will return ‘0’.
IS7] Doc ID 16912 Rev 5 261/936

System Integration Unit Lite (SIUL) RMO0046

GPIO Pad Data Output registers 0_3-68_71 (GPDO[0_3:68_71])

These registers can be used to set or clear a single GPIO pad with a byte access.

Figure 107. Port GPIO Pad Data Output registers 0_3-68_71 (GPDO[0_3:68_71])

Base + 0x0600 (GPDOO0_3)
Address: ... Access: User read/write

Base + 0x0644 (GPDO68_71) 18 registers

0 1 2 3 4 5 6 7 8 9 10 11 | 12 13 14 15
R| O 0 0 0 0 0 0 |[pDO| O 0 0 0 0 0 0 |PDO
w [0 (1]

R| 0O 0 0 0 0 0 0 |ppo| O 0 0 0 0 0 0 |PDO
W (2] [3]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 103. GPDOJ[0_3:68_71] field descriptions

Field Description

Pad Data Out

This bit stores the data to be driven out on the external GPIO pad controlled by this register.

0: Logic low value is driven on the corresponding GPIO pad when the pad is configured as an
output.

1: Logic high value is driven on the corresponding GPIO pad when the pad is configured as an
output.

PDOI[n]

GPIO Pad Data Input registers 0_3-68_71 (GPDI[0_3:68_71])

These registers can be used to read the GPIO pad data with a byte access.

Figure 108. GPIO Pad Data Input registers 0_3-68_71 (GPDI[0_3:68_71])

Base + 0x0800 (GPDIO_3)
Address: ... Access: User read-only
Base + 0x0844 (GPDI68_71) 18 registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PDI PDI

Rho|o|] 0|0 0] O0]|oO 0| 0| 0| O] O] O0]O
0] (1]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 3
PDI PDI
R O 0 0 0 0 0 0 0 0 0 0 0 0 0
(2] (3]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

262/936 Doc ID 16912 Rev 5 KYI

RMO0046

System Integration Unit Lite (SIUL)

Table 104. GPDI[0_3:68_71] field descriptions

Field

Description

PDI[X]

Pad Data In
This bit stores the value of the external GPIO pad associated with this register.

0: The value of the data in signal for the corresponding GPIO pad is logic low.
1: The value of the data in signal for the corresponding GPIO pad is logic high.

Parallel GPIO Pad Data Out register 0—-3 (PGPDO[0:3])

These registers set or clear the respective pads of the device.

Figure 109. Parallel GPIO Pad Data Out register 0—-3(PGPDOJ[0:3])

~ Base + 0x0C00 (PGPDOO0) Base + 0x0C05 (PGPDO2)

Add : A U d/writ
5% Base + 0x0C04 (PGPDO1) Base + 0x0COC (PGPDO3) coess: User read/write
0 1 2 3‘4 5 6 7‘8 9 10 11‘12 13 14 15
R
PPDO[X][15:0
W [X][15:0]
Resst 0 0 0 ©0]/0 0 o0 O[O0 o0 0 O[O0 0 0 O
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R
PPDO[x + 1][15:0]
w
Resst 0 0 o0 ©0]/0 0 o0 O[O0 o0 0 O[O0 0 0 O
Table 105. PGPDOO0_3 field descriptions
Field Description
Parallel Pad Data Out
Write or read the data register that stores the value to be driven on the pad in output mode.
Accesses to this register location are coherent with accesses to the bit-wise GPIO Pad Data
PPDO[X] Output registers 0_3-68_71 (GPDO[0_3:68_71]).
The x and bit index define which PPDO register bit is equivalent to which PDO register bit
according to the following equation:
PPDO[X][y] = PDO[(x * 16) +]
Note: The PGPDO registers access the same physical resource as the PDO and MPGPDQO

address locations. Some examples of the mapping:
PPDQ[0]j[0] = PDO[0]

PPDQJ2][0] = PDO[32]

Parallel GPIO Pad Data In register 0-3 (PGPDI[0:3])

These registers hold the synchronized input value from the pads.

Doc ID 16912 Rev 5 263/936

System Integration Unit Lite (SIUL) RMO0046

Figure 110. Parallel GPIO Pad Data In register 0—-3 (PGPDI[0:3])

Address: Base + 0x0C40 (PGPDIO) Base + 0x0C45 (PGPDI2) Access: User read-onl
" Base + 0x0C44 (PGPDI1) Base + 0x0C4C (PGPDI3) ' y
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R PPDI[x][15:0]
we [] L[] L L

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R PPDI[x + 1][15:0]

we [[[[1 T [[I [|

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 106. PGPDI[0:3] field descriptions

Field Description

Parallel Pad Data In

Read the current pad value. Accesses to this register location are coherent with accesses to the
bit-wise GPIO Pad Data Input registers 0_3-68_71 (GPDI[0_3:68_71]).

The x and bit index define which PPDI register bit is equivalent to which PDI register bit
according to the following equation:

PPDI[X][y] = PDI[(x * 16) +]

PPDI[x]

Masked Parallel GPIO Pad Data Out register 0-6 (MPGPDO[0:6])

This register can be used to selectively modify the pad values associated to PPDO[x][15:0].
The MPGPDOQOIx] register may only be accessed with 32-bit writes. 8-bit or 16-bit writes will
not modify any bits in the register and cause a transfer error response by the module. Read
accesses will return 0.

Figure 111. Masked Parallel GPIO Pad Data Out register 0-6 (MPGPDO[0:6])

Base + 0x0C80 (MPGPDOO0) Base + 0x0C80 (MPGPDO4)
Base + 0x0C84 (MPGPDO1) Base + 0x0C84 (MPGPDO5)
)

Address:
55" Base + 0x0C88 (MPGPDO2) Base + 0x0C98 (MPGPDO6)

Access: User write-only

Base + 0x0C8C (MPGPDO3)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ro\o\o\o o\o\o\o o\o\o\o o\o\o\o
W MPPDO[X][15:0]

Reset 0 0 0 o\o

o
o
o
N
o
o
o
-
o
o
o

264/936 Doc ID 16912 Rev 5 KYI

RMO0046

System Integration Unit Lite (SIUL)

Table 107. MPGPDO[0:6] field descriptions

Field Description
Mask Field
MASK([x] Each bit corresponds to one data bit in the MPPDOIx] field at the same bit location.
[15:0] 0: The associated bit value in the MPPDOI[] field is ignored.
1: The associated bit value in the MPPDO[x] field is written.
Masked Parallel Pad Data Out
Write the data register that stores the value to be driven on the pad in output mode.
MPPDO[x] Accesses to this register location are coherent with accesses to the bit-wise GPIO Pad Data
[15:0] Output registers 0_3-68_71 (GPDO[0_3:68_71]).

The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:

MPPDO[X][y] = PDO[(x * 16) + y]

Interrupt Filter Maximum Counter registers 0-24 (IFMC[0:24])

These registers configure the filter counter associated with each digital glitch filter.

Figure 112. Interrupt Filter Maximum Counter registers 0—24 (IFMC[0:24])

Base + 0x1000 (IFMCO0)

Address: ... Access: User read/write
Base + 0x1060 (IFMC24) 25 registers
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0
MAXCNTx{3:0]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 108. IFMCJ[0:24] field descriptions
Field Description
Maximum Interrupt Filter Counter setting.
Filter Period = (Tgk x MAXCNTX) + (n x Tck)
MAXCNTx Where ncan be -2 to 3
[3:0] MAXCNTx can be 0 to 15
Tcx: Prescaled Filter Clock Period, which is IRC clock prescaled to IFCP value
T\rc: Basic Filter Clock Period: 62.5 ns (figc = 16 MHz)
K‘YI Doc ID 16912 Rev 5 265/936

System Integration Unit Lite (SIUL) RMO0046

Interrupt Filter Clock Prescaler Register (IFCPR)

This register configures a clock prescaler that selects the clock for all digital filter counters in
the SIUL.

Figure 113. Interrupt Filter Clock Prescaler Register (IFCPR)

Address: Base + 0x1080 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0
IFCP[3:0]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 109. IFCPR field descriptions
Field Description
Interrupt Filter Clock Prescaler setting
IFCP Prescaled Filter Clock Period = T\g¢ x (IFCP + 1)
[3:0] T\rc is the internal oscillator period.
IFCP can be 0 to 15.
266/936 Doc ID 16912 Rev 5 1S

RMO0046

System Integration Unit Lite (SIUL)

11.6 Functional description

11.6.1 General
This section provides a functional description of the System Integration Unit Lite.

11.6.2 Pad control
The SIUL controls the configuration and electrical characteristic of the device pads. It
provides a consistent interface for all pads, both on a by-port and a by-bit basis. The SIUL
allows each pad to be configured as either a General Purpose Input Output pad (GPIO), and
as one or more alternate functions (input or output). The pad configuration registers (PCRn,
see Section , “Pad Configuration Registers (PCR[0:71])) allow software control of the static
electrical characteristics of external pins with a single write. These configure the following
pad features:
® Open drain output enable
® Slew rate control
e Pull control
® Pad assignment
e Control of analog path switches
® Safe mode behavior configuration

11.6.3 General purpose input and output pads (GPIO)
The SIUL allows each pad to be configured as either a General Purpose Input Output pad
(GPIO), and as one or more alternate functions (input or output), the function of which is
normally determined by the peripheral that uses the pad.
The SIUL manages up to 64 GPIO pads organized as ports that can be accessed for data
reads and writes as 32-bit, 16-bit or 8-bit.
As shown in Figure 114, all port accesses are identical with each read or write being
performed only at a different location to access a different port width.

31 23 15 7 0
SIUL Base + 0x0000| 32-bit Port
15 7 0 15 7 0
SIULEX%S;OZ 16-bit Port | SIULOB)?OS(?OS | 16-bit Port |
SIUL Base + ! 0 SIUL Base + ! 0 SIUL Base + ! 0 SIUL Base + ’ 0
Figure 114. Data port example arrangement showing configuration for different port
width accesses

This implementation requires that the registers are arranged in such a way as to support this
range of port widths without having to split reads or writes into multiple accesses.
The SIUL has separate data input (GPDIn_n, see Section, “GPIO Pad Data Input registers
0_3-68_71 (GPDI[0_3:68_71])) and data output (GPDOnN_n, see Section , “GPIO Pad Data
Output registers 0_3—-68_71 (GPDQO[0_3:68_71])) registers for all pads, allowing the

'] Doc ID 16912 Rev 5 267/936

System Integration Unit Lite (SIUL) RMO0046

possibility of reading back an input or output value of a pad directly. This supports the ability
to validate what is present on the pad rather than merely confirming the value that was
written to the data register by accessing the data input registers.

The data output registers support both read and write operations to be performed.
The data input registers support read access only.

When the pad is configured to use one of its alternate functions, the data input value reflect
the respective value of the pad. If a write operation is performed to the data output register
for a pad configured as an alternate function (non GPIO), this write will not be reflected by
the pad value until reconfigured to GPIO.

The allocation of what input function is connected to the pin is defined by the PSMI registers
(see Section , “Pad Selection for Multiplexed Inputs registers (PSMI[0_3:32_35])).

11.6.4 External interrupts

The SIUL supports 25 external interrupts, EIRQ[0:24]. The signal description chapter of this

reference manual provides a map of the external interrupts.

The SIUL supports four interrupt vectors to the interrupt controller. Each vector interrupt has

eight external interrupts combined together with the presence of flag generating an interrupt

for that vector if enabled. All of the external interrupt pads within a single group have equal

priority.

Refer to Figure 115 for an overview of the external interrupt implementation.

Interrupt
Vectors

538

S IRQ_15_08 IRQ_07_00

£ 8 IRQ_24 IRQ_23_16

OR OR OR OR
| NN N N N N N N N N N N N N N
Interrupt enable — IRE[24:0]
Glitch filter Prescaler | EIF[24] EIF[23:16] EIF[15:8] EIF[7:0]
Interrup}qlifscijgge Enable
Glitch filter Counter_n | Edge Detection b— REE[R40] |
[MAXCOUNTK | [IIIIIIIIIIIIIIIIIIIIIIII Fallin
IRQ Glitch Filter enable | Glitch Filter I IFEE[24:0] |
[s] IR VN RRRSNANRRRRRNNAARRS
Pads

268/936

Figure 115. External interrupt pad diagram

External interrupt management

Each interrupt can be enabled or disabled independently. This can be performed using the
IRER (see Section , “Interrupt Request Enable Register (IRER)). A pad defined as an
external interrupt can be configured to recognize interrupts with an active rising edge, an

Doc ID 16912 Rev 5 IYI

RMO0046

System Integration Unit Lite (SIUL)

11.7

active falling edge or both edges being active. A setting of having both edge events disabled
is reserved and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and
IFEER.

Each external interrupt supports an individual flag that is held in the ISR (see Section ,
“Interrupt Status Flag Register (ISR)). This register is a write-1-to-clear register type,
preventing inadvertent overwriting of other flags in the same register.

Pin muxing

For pin muxing, please refer to Chapter 3: Signal Description of this reference manual.

Doc ID 16912 Rev 5 269/936

€200z0 and e200z0h Core RMO0046

12

12.1

12.2

270/936

e200z0 and e200z0h Core

Overview
The SPC560P40/34 microcontroller implements the e200z0h core.

The 200 processor family is a set of CPU cores built on the Power Architecture technology.
€200 processors are designed for deeply embedded control applications that require low
cost solutions rather than maximum performance.

The e200z0 and €200z0h processors integrate an integer execution unit, branch control
unit, instruction fetch and load/store units, and a multi-ported register file capable of
sustaining three read and two write operations per clock. Most integer instructions execute
in a single clock cycle. Branch target prefetching is performed by the branch unit to allow
single-cycle branches in some cases.

The €200z0 core is a single-issue, 32-bit Power Architecture technology VLE-only design
with 32-bit general purpose registers (GPRs). Implementing only the VLE (variable-length
encoding) APU provides improved code density. All arithmetic instructions that execute in
the core operate on data in the GPRs.

Features

The following is a list of some of the key features of the €200z0 and e200z0h cores:
32-bit Power Architecture technology VLE-only programmer’s model

Single issue, 32-bit CPU

Implements the VLE APU for reduced code footprint

In-order execution and retirement

Precise exception handling

Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Target Buffer (€200z0h only)

® Supports independent instruction and data accesses to different memory subsystems,
such as SRAM and Flash memory via independent Instruction and Data bus interface
units (BIUs) (e200z0h only)

® Supports instruction and data access via a unified 32-bit Instruction/Data BIU (€200z0
only)

® Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers
® Power management

— Low power design

— Dynamic power management of execution units

Doc ID 16912 Rev 5 KYI

RMO0046 €200z0 and e200z0h Core
® Testability
— Synthesizeable, full MuxD scan design
— ABIST/MBIST for optional memory arrays
12.2.1 Microarchitecture summary

The e200z0 processor utilizes a four stage pipeline for instruction execution. The Instruction
Fetch (stage 1), Instruction Decode/Register file Read/Effective Address Calculation (stage
2), Execute/Memory Access (stage 3), and Register Writeback (stage 4) stages operate in

an overlapped fashion, allowing single clock instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-
bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation
Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8 x 32 Hardware Multiplier array, result
feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the
divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to
minimize delays during change of flow operations. Sequential prefetching is performed to
ensure a supply of instructions into the execution pipeline. Branch target prefetching from
the BTB is performed to accelerate certain taken branches in the e200z0. Prefetched
instructions are placed into an instruction buffer with 4 entries (2 entries in €200z0), each
capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches that are not taken execute in a single clock. Branches with successful
target prefetching have an effective execution time of one clock on e200z0h. All other taken
branches have an execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data
with automatic zero or sign extension of byte and halfword load data as well as optional byte
reversal of data. These instructions can be pipelined to allow effective single cycle
throughput. Load and store multiple word instructions allow low overhead context save and
restore operations. The load/store unit contains a dedicated effective address adder to allow
effective address generation to be optimized. Also, a load-to-use dependency does not incur
any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register
operations defined by the Power Architecture architecture. The condition register consists of
eight 4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a mechanism for
testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with
no software overhead.

Doc ID 16912 Rev 5 271/936

€200z0 and e200z0h Core RMO0046

Block diagram

ONnCE/NEXUS CPU
CONTROL LOGIC CONTROL LOGIC
Y L |
T T
| LR | INTEGER
spr' GR! GpR |« »| EXECUTION
| CTR | A UNIT
XER
1 1
o B | MULTIPLY
E'cﬁ INSTRUCTION UNIT - > UNIT
g INSTRUCTION BUFFER
%N:/ - CONTROL
™ zZ -
D
= W _| EXTERNAL
< O i =
E— N G ' NTEREACE | DATA
L
E}l) o I -
= (MTSPRMFSPRy >
_ P
Q Q PC_ | BRANCH
c 2 UNIT | UNIT
8<ﬁ\
=z
LOAD/STORE
UNIT <

Figure 116. e200z0 block diagram

272/936 Doc ID 16912 Rev 5 IYI

RMO0046 €200z0 and e200z0h Core

, OnCE/NEXUS CPU
CONTROL LOGIC CONTROL LOGIC
Y L |
NEXUS
T T
DEBUG | ERR | INTEGER
UNIT SPR| CTR | GPR |<— > EXEUC’\lIJI'TI'ION
XER
| |

on
& INSTRUCTION UNIT «~f MULTRLY
L] =
a Z INSTRUCTION BUFFER
R — CONTROL

S < -

™ w
< o
> L | EXTERNAL
a z AA] SPR -

<Nﬁ @ INTERFACE

@ @ (MTSPRIMFSPRy >
o &
Q = PC | BRANCH
= o UNIT | UNIT
& 7
8> &

2 LOAD/STORE
= UNIT -

1l

DATA BUS INTERFACE UNIT

N\

/(32 32 /N

N N
ADDRESS’ DATA CONTROL

Figure 117. e200z0h block diagram

KYI Doc ID 16912 Rev 5 273/936

€200z0 and e200z0h Core RMO0046

274/936

Instruction unit features

The features of the e200 Instruction unit are:

® 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or as
many as two 16-bit VLE instructions per clock

® Instruction buffer with 4 entries in €200z0h, each holding a single 32-bit instruction, or a
pair of 16-bit instructions

® Instruction buffer with 2 entries in e200z0, each holding a single 32-bit instruction, or a
pair of 16-bit instructions

® Dedicated PC incrementer supporting instruction prefetches

® Branch unit with dedicated branch address adder supporting single cycle of execution
of certain branches, two cycles for all others

Integer unit features

The e200 integer unit supports single cycle execution of most integer instructions:

32-bit AU for arithmetic and comparison operations

32-bit LU for logical operations

32-bit priority encoder for count leading zero’s function

32-bit single cycle barrel shifter for shifts and rotates

32-bit mask unit for data masking and insertion

Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution
timing

® 8 x 32 hardware multiplier array supports 1 to 4 cycle 32 x 32 — 32 multiply (early out)

Load/Store unit features

The €200 load/store unit supports load, store, and the load multiple / store multiple
instructions:

® 32-bit effective address adder for data memory address calculations

® Pipelined operation supports throughput of one load or store operation per cycle
® 32-bit interface to memory (dedicated memory interface on e200z0h)

€200z0h system bus features

The features of the e200z0h System Bus interface are as follows:

® Independent Instruction and Data Buses

® AMBA AHB Lite Rev 2.0 Specification with support for ARM v6 AMBA Extensions
— Exclusive Access Monitor
— Byte Lane Strobes
— Cache Allocate Support

® 32-bit address bus plus attributes and control on each bus

32-bit read data bus for Instruction Interface

® Separate uni-directional 32-bit read data bus and 32-bit write data bus for Data
Interface

® Overlapped, in-order accesses

Doc ID 16912 Rev 5 KYI

RMO0046

€200z0 and e200z0h Core

12.3

Note:

Nexus features

The Nexus 1 module is compliant with Class 1 of the IEEE-ISTO 5001-2003 standard. The
following features are implemented:

® Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays
program flow discontinuities (direct and indirect branches, exceptions, etc.), allowing
the development tool to interpolate what transpires between the discontinuities. Thus,
static code may be traced.

® Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership
trace by providing visibility of which process ID or operating system task is activated.
An Ownership Trace Message is transmitted when a new process/task is activated,
allowing the development tool to trace ownership flow.

Run-time access to the processor memory map via the JTAG port. This allows for
enhanced download/upload capabilities.

Watchpoint Messaging

Watchpoint Trigger enable of Program Trace Messaging

Registers for Program Trace, Ownership Trace and Watchpoint Trigger control
All features controllable and configurable via the JTAG port

Core registers and programmer’s model

This section describes the registers implemented in the e200z0 and e200z0h cores. It
includes an overview of registers defined by the Power Architecture technology, highlighting
differences in how these registers are implemented in the e200 core, and provides a
detailed description of e200-specific registers. Full descriptions of the architecture-defined
register set are provided in Power Architecture Specification.

The Power Architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions. Data is transferred between
memory and registers with explicit load and store instructions only.

Figure 118 and Figure 120 show the €200 register set, including the registers that are
accessible while in supervisor mode and the registers that are accessible in user mode. The
number to the right of the special-purpose registers (SPRs) is the decimal number used in
the instruction syntax to access the register (for example, the integer exception register
(XER) is SPR 1).

e200z0 and e200z0h is a 32-bit implementation of the Power Architecture specification.

Doc ID 16912 Rev 5 275/936

€200z0 and e200z0h Core

RMO0046

Condition Register

o
s3]

| o
E o
= f =
= 2

D0
«Q ®
@ «Q
* @«

@

4

CTR SPR9

SPR8

>

ER
XER SPR 1

=
o
=)
=
5
@
(/2]
=
51
2
@

MSR

o
3
o
Q
@
w
w
=]
2
<
(1]
@
@,
=)
=]

PVR SPR 287
Processor ID
SPR 286

1

SVR SPR 1023

(2]
-~
7}
@
@
3
35
=
@,
=)
E

technology

General Registers

Exception Handling/Control Registers

SPR General
General-Purpose SPRGO SPR 272
Registers
SPRG1 SPR 273
GPRO
GPR1
GPR31

Processor Control Registers

Hardware Implementation
Dependent!

HIDO SPR 1008

HID1 SPR 1009

Debug Registers?

Instruction Address

Debug Control Compare

DBCRO | SPR308 IACH SPR 312
DBCR1 SPR 309 IAC2 SPR 313
DBCR2 | SPR310 IAC3 SPR 314
IAC4 SPR 315

Debug Status Data Address Compare
SPR304 ['pact | sPrats
DAC2 SPR 317

1 - These e200-specific registers may not be supported
by other Power Architecture processors

2 - Optional registers defined by the Power Architecture

Save and Restore Interrupt Vector Prefix

SRRO | SPR26 SPR 63
SRRT | SPR27
CSRRO | SPR58
CSRR1 | SPR59
DSRRO | SPR574
DSRR1 | SPR575

Exception Syndrome Register
ESR SPR 62

Machine Check
Syndrome Register

MCSR SPR 572

Data Exception Address
DEAR SPR 61

Memory Management Registers

Process ID

Configuration (Read-only

SPR 1015

Cache Registers

Cache Configuration
(Read-only)

SPR515

Figure 118. e200z0 Supervisor mode programmer’s model

276/936

Doc ID 16912 Rev 5

RMO0046

€200z0 and e200z0h Core

Condition Register

o
s3]

| o
E o
= f =
= 2

D0
«Q ®
@ «Q
* @«

@

4

CTR SPR9

SPR8

>

ER
XER SPR 1

=
o
=)
=
5
@
(/2]
=
51
2
@

MSR

o
3
o
Q
@
w
w
=]
2
<
(]
@
@,
=)
=

PVR SPR 287
Processor ID
SPR 286

1

SVR SPR 1023

(2]
-~
7}
@
@
3
35
=
@,
=)
E

technology

General Registers

General-Purpose

Registers

GPRO

GPR1

GPR31

Processor Control Registers

Exception Handling/Control Registers

SPR General
SPRGO SPR 272
SPRG1 SPR 273

Hardware Ir1nplementation

Dependent
HIDO SPR 1008
HID1 SPR 1009
Debug Registers?
Instruction Address
Debug Control Compare
DBCR1 SPR 309 IAC2 SPR 313
IAC4 SPR 315
Debug Status Data Address Compare
DBSR SPR 304 DACH SPR 316
DAC2 SPR 317

1 - These e200-specific registers may not be supported
by other Power Architecture processors

2 - Optional registers defined by the Power Architecture

Save and Restore

SRRO

SRR1 SPR27
CSRRO SPR 58
CSRR1 SPR 59
DSRRO | SPR 574
DSRR1 | SPR575

Exception Syndrome Register
ESR SPR 62

Machine Check
Syndrome Register

MCSR SPR 572

Data Exception Address
DEAR SPR 61

Memory Management Registers

Process ID

Configuration (Read-only

SPR 1015

Cache Registers

Cache Configuration
(Read-only)

BTB Registers

SPR 515

BTB Control'

SPR 1013

Interrupt Vector Prefix

SPR 26 SPR 63

Figure 119. e200z0h Supervisor mode programmer’s model

Doc ID 16912 Rev 5

277/936

€200z0 and e200z0h Core RMO0046

USER Mode Programmer Model

General Registers

Condition Register General-Purpose

Registers .
Cache Registers
Count Register GPRO

9 GPR1 Cache Configuration
SPR9 (Read-only)
Link Register .
L1CFGO SPR 515

XER

XER SPR 1

12.3.1

12.4

278/936

Figure 120. e200 User mode program model

Unimplemented SPRs and read-only SPRs

€200 fully decodes the SPR field of the mfspr and mtspr instructions. If the SPR specified
is undefined and not privileged, an illegal instruction exception is generated. If the SPR
specified is undefined and privileged and the CPU is in user mode (MSR[PR=1]), a
privileged instruction exception is generated. If the SPR specified is undefined and
privileged and the core is in supervisor mode (MSR[PR=0]), an illegal instruction exception
is generated.

For the mtspr instruction, if the SPR specified is read-only and not privileged, an illegal
instruction exception is generated. If the SPR specified is read-only and privileged and the
core is in user mode (MSR[PR=1]), a privileged instruction exception is generated. If the
SPR specified is read-only and privileged and the core is in supervisor mode (MSR[PR=0]),
an illegal instruction exception is generated.

Instruction summary

The 20020 core supports Power Architecture technology VLE instructions..

Doc ID 16912 Rev 5 KYI

RM0046 Peripheral Bridge (PBRIDGE)

13 Peripheral Bridge (PBRIDGE)

13.1 Introduction

The Peripheral Bridge (PBRIDGE) is the interface between the system bus and on-chip
peripherals.

13.1.1 Block diagram

System Bus Crossbar Switch (XBAR)

o) eTimer_0O
o} < Asynchronous | |

E Peripheral / Bridge - FlexPWM
1 Bridge > ~| ADC_O
@

Safety_Port

Other peripherals

Figure 121. PBRIDGE interface

13.1.2 Overview

The PBRIDGE acts as interface between the system bus and lower bandwidth peripherals.
Accesses that fall within the address space of the PBRIDGE are decoded to provide
individual module selects for peripheral devices on the slave bus interface.

As shown in Figure 121, the asynchronous bridge is a dedicated module that
resynchronizes signals synchronous to the system clock (SYS_CLK) to the ones
synchronous to the motor control clock (MC_PLL_CLK).

The PBRIDGE has the following key features:
® Supports the slave interface signals. This interface is only meant for slave peripherals.

® Supports 32-bit slave peripherals (byte, halfword, and word reads and writes are
supported to each)

® Provides configurable per-master access protections

13.1.3 Modes of operation
The PBRIDGE has only one operating mode.

K‘YI Doc ID 16912 Rev 5 279/936

Peripheral Bridge (PBRIDGE) RM0046

13.2

13.2.1

Note:

13.2.2

280/936

Functional description

The PBRIDGE serves as an interface between a system bus and the peripheral (slave) bus.
It functions as a protocol translator. Accesses that fall within the address space of the
PBRIDGE are decoded to provide individual module selects for peripheral devices on the
slave bus interface.

Access support

Aligned 32-bit word accesses, halfword accesses, and byte accesses are supported for the
peripherals. Peripheral registers must not be misaligned, although no explicit checking is
performed by the PBRIDGE.

Data accesses that cross a 32-bit boundary are not supported.

Peripheral Write Buffering
Buffered writes are not supported by the device PBRIDGE.

Read cycles

Two-clock read accesses are possible with the Peripheral Bridge when the requested
access size is 32-bits or smaller, and is not misaligned across a 32-bit boundary.

Write cycles

Three clock write accesses are possible with the Peripheral Bridge when the requested
access size is 32-bits or smaller. Misaligned writes that cross a 32-bit boundary are not
supported.

General operation

Slave peripherals are modules that contain readable/writable control and status registers.
The system bus master reads and writes these registers through the PBRIDGE. The
PBRIDGE generates module enables, the module address, transfer attributes, byte enables,
and write data as inputs to the slave peripherals. The PBRIDGE captures read data from the
slave interface and drives it on the system bus.

The PBRIDGE occupies a 64 MB portion of the address space. The register maps of the
slave peripherals are located on 16-KB boundaries. Each slave peripheral is allocated one
16-KB block of the memory map, and is activated by one of the module enables from the
PBRIDGE.

The PBRIDGE is responsible for indicating to slave peripherals if an access is in supervisor
or user mode. All eDMA transfers are done in supervisor mode.

Doc ID 16912 Rev 5 KYI

RMO0046

Crossbar Switch (XBAR)

14 Crossbar Switch (XBAR)

14.1 Introduction

This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous
connections between three master ports and three slave ports. XBAR supports a 32-bit
address bus width and a 32-bit data bus width at all master and slave ports.

14.2 Block diagram

Figure 122 shows a block diagram of the crossbar switch.

Master Master

0

Master

H

Crossbar Switch

Slave Slave

Figure 122. XBAR block diagram

Table 110 gives the crossbar switch port for each master and slave, the assigned and fixed
ID number for each master and shows the master ID numbers as they relate to the master
port numbers.

Slave

Master modules

Slave modules

Table 110. Device XBAR switch ports
Port
Module Type Logical Physical master ID
number
€200z0 core—CPU instructions Master 0 0
€200z0 core—Data Master 0 1
eDMA Master 2 2
Flash Controller Slave 0 —
Internal SRAM Controller Slave 2 —
Peripheral bridge Slave 7 —
Doc ID 16912 Rev 5 281/936

Crossbar Switch (XBAR) RM0046

14.3

14.4

14.5

14.5.1

14.5.2

14.6

14.6.1

282/936

Overview

The XBAR allows for concurrent transactions to occur from any master port to any slave
port. It is possible for all master ports and slave ports to be in use at the same time as a
result of independent master requests. If a slave port is simultaneously requested by more
than one master port, arbitration logic selects the higher priority master and grants it
ownership of the slave port. All other masters requesting that slave port are stalled until the
higher priority master completes its transactions.

Requesting masters are granted access based on a fixed priority.

Features

® 3 Master ports
— e200z0 core complex Instruction port
- €200z0 core complex Load/Store Data port
- eDMA
® 3 Slave ports
— Flash memory (code and data)
— Internal SRAM
— Peripheral bridge
® 32-bit internal address, 32-bit internal data paths
Fully concurrent transfers between independent master and slave ports
® Fixed priority scheme and fixed parking strategy

Modes of operation

Normal mode

In normal mode, the XBAR provides the register interface and logic that controls crossbar
switch configuration.

Debug mode

The XBAR operation in debug mode is identical to operation in normal mode.

Functional description

This section describes the functionality of the XBAR in more detail.

Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple
masters to communicate concurrently with multiple slaves. To maximize data throughput, it
is essential to keep arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves,
detailing when the XBAR stalls masters, or inserts bubbles on the slave side.

Doc ID 16912 Rev 5 KYI

RMO0046

Crossbar Switch (XBAR)

14.6.2

14.6.3

General operation

When a master makes an access to the XBAR from an idle master state, the access is taken
immediately by the XBAR. If the targeted slave port of the access is available (that is, the
requesting master is currently granted ownership of the slave port), the access is
immediately presented on the slave port. It is possible to make single clock (zero wait state)
accesses through the XBAR by a granted master. If the targeted slave port of the access is
busy or parked on a different master port, the requesting master receives wait states until
the targeted slave port can service the master request. The latency in servicing the request
depends on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be just another slave to the master device, the master device
has no indication that it owns the slave port it is targeting. While the master does not have
control of the slave port it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different
slave port has completed, regardless of its priority on the newly targeted slave port. This
prevents deadlock from occurring when a master has the following conditions:

o Outstanding request to slave port A that has a long response time
® Pending access to a different slave port B
® Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle
of arbitration, assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of
that slave port until it gives up the slave port by running an IDLE cycle, leaves that slave port
for its next access, or loses control of the slave port to a higher priority master with a request
to the same slave port. However, because all masters run a fixed-length burst transfer to a
slave port, it retains control of the slave port until that transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master that did the last transfer.

Master ports

A master access is taken if the slave port to which the access decodes is either currently
servicing the master or is parked on the master. In this case, the XBAR is completely
transparent and the master access is immediately transmitted on the slave bus and no
arbitration delays are incurred. A master access stall if the access decodes to a slave port
that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting
access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than
all other requesting masters, then the master gains control over the slave port as soon as
the data phase of the current access is completed. If the slave port is currently servicing
another master of a higher priority, then the master gains control of the slave port after the
other master releases control of the slave port if no other higher priority master is also
waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not
occupied by a slave port. This is the only time the XBAR directly responds with an error
response. All other error responses received by the master are the result of error responses
on the slave ports being passed through the XBAR.

Doc ID 16912 Rev 5 283/936

Crossbar Switch (XBAR) RM0046

14.6.4

14.6.5

14.6.6

284/936

Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when
masters are actively making requests. To do this the XBAR must not insert any bubbles onto
the slave bus unless absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a
master is actively making a request. This occurs when a handoff of bus ownership occurs
and there are no wait states from the slave port. A requesting master that does not own the
slave port is granted access after a one clock delay.

Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). Table 111
shows the priority levels assigned to each master (the lowest has highest priority).

Table 111. Hardwired bus master priorities

Port
Module Priority level
Type Number
€200z0 core—CPU instructions Master 0 7
€200z0 core—Data Master 1 6
eDMA Master 2 5

Arbitration

XBAR supports only a fixed-priority comparison algorithm.
Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority
level in the XBAR_MPR. If two masters both request access to a slave port, the master with
the highest priority in the selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new
requesting master’s priority level is higher than that of the master that currently has control
over the slave port (if any). The slave port does an arbitration check at every clock edge to
ensure that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently
has control of the slave port, the higher priority master is granted control at the termination
of any currently pending access, assuming the pending transfer is not part of a burst
transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is
granted control of the slave port. But if the new requesting master’s priority level is lower
than that of the master that currently has control of the slave port, the new requesting
master is forced to wait until the master that currently has control of the slave port is finished
accessing the current slave port.

Doc ID 16912 Rev 5 KYI

RM0046 Crossbar Switch (XBAR)

Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port
parks always to the most recently requesting master (park-on-last). When parked on the last
master, the slave port is passing that master’s signals through to the slave bus. When the
master accesses the slave port again, no other arbitration penalties are incurred except that
a one clock arbitration penalty is incurred for each access request to the slave port made by
another master port. All other masters pay a one clock penalty.

KYI Doc ID 16912 Rev 5 285/936

Error Correction Status Module (ECSM) RM0046

15

15.1

15.2

15.3

15.4

286/936

Error Correction Status Module (ECSM)

Introduction

The Error Correction Status Module (ECSM) provides control functions for the device
Standard Product Platform (SPP) including program-visible information about the platform
configuration and revision levels, a reset status register, a software watchdog timer, and
wakeup control for exiting sleep modes, and optional features such as an address map for
the device’s crossbar switch, information on memory errors reported by error-correcting
codes and/or generic access error information for certain processor cores. It also provides
with register access protection for the following slave modules: INTC, ECSM, STM, and
SWT.

Overview

The Error Correction Status Module is mapped into the IPS space and supports a number of
control functions for the platform device.

Features

The ECSM includes these features:
® Program-visible information on the platform device configuration and revision
® Reset status register (MRSR)

® Registers for capturing information on platform memory errors if error-correcting codes
(ECC) are implemented

® Reqgisters to specify the generation of single- and double-bit memory data inversions for
test purposes if error-correcting codes are implemented

® Access address information for faulted memory accesses for certain processor core
micro-architectures

® XBAR priority functions, including forcing round robin and high priority enabling

o Capability to restrict register access to supervisor mode to selected on-platform slave
devices: INTC, ECSM, STM, and SWT

Memory map and registers description

This section details the programming model for the ECSM. This is an on-platform 128-byte
space mapped to the region serviced by an IPS bus controller. Some of the control registers
have a 64-bit width. These 64-bit registers are implemented as two 32-bit registers, and
include an “H” and “L” suffixes, indicating the “high” and “low” portions of the control function.

The Error Correction Status Module does not include any logic that provides access control.
Rather, this function is supported using the standard access control logic provided by the
IPS controller.

ECSM registers are accessible only when the core is in supervisor mode (see
Section 15.4.3, “ECSM_reg_protection).

Doc ID 16912 Rev 5 KYI

RMO0046

Error Correction Status Module (ECSM)

15.4.1

Memory map

Table 112 lists the registers in the ECSM.

Table 112. ECSM registers

Offset from
ECSM_BASE Register Location Size (bits)
O0xFFF4_0000
0x0000 PCT—Processor Core Type register on page 15-288 16
0x0002 REV—Revision register on page 15-288 16
0x0004 PLAMC — Platform XBAR Master Configuration on page 15-289 16
0x0006 PLASC — Platform XBAR Sleave Configuration on page 15-289 16
0x0008 IMC—IPS Module Configuration register on page 15-290 16
0x000C—-0x000E Reserved
0x000F MRSR—Miscellaneous Reset Status register ‘ on page 15-290‘ 8
0x0010-0x001E Reserved
0x001F MIR—Miscellaneous Interrupt register ‘ on page 15-291 ’ 8
0x0020—-0x0023 Reserved
0x0024 MUDCR—Miscellaneous User-Defined Control Register ‘ on page 15-292| 32
0x0028-0x0042 Reserved
0x0043 ECR—ECC Configuration register ‘ on page 15-293‘ 8
0x0044-0x0046 Reserved
0x0047 ESR—ECC Status register ‘ on page 15-294’ 8
0x0048-0x0049 Reserved
0x004A EEGR—ECC Error Generation register ‘ on page 15-296| 16
0x004C—-0x004F Reserved
0x0050 FEAR—Flash ECC Address register ‘ on page 15-298‘ 32
0x0054-0x0055 Reserved
0x0056 FEMR—Flash ECC Master Number Register on page 15-299 8
0x0057 FEAT—Flash ECC Attributes register on page 15-299 8
0x0058-0x005B Reserved
0x005C FEDR—Flash ECC Data register on page 15-300 32
0x0060 REAR—RAM ECC Address register on page 15-301 32
0x0064 Reserved
0x0065 RESR—RAM ECC Syndrome register on page 15-302 8
0x0066 REMR—RAM ECC Master register on page 15-304 8
0x0067 REAT—RAM ECC Attributes register on page 15-304 8
0x0068—-0x006B Reserved
ﬂ Doc ID 16912 Rev 5 287/936

Error Correction Status Module (ECSM) RM0046

Table 112. ECSM registers (continued)

Offset from
ECSM_BASE Register Location Size (bits)
0xFFF4_0000
0x006C REDR—RAM ECC Data register on page 15-305 32
0x0070-0x3FFF Reserved

15.4.2 Registers description

Attempted accesses to reserved addresses result in an error termination, while attempted
writes to read-only registers are ignored and do not terminate with an error. Unless noted
otherwise, writes to the programming model must match the size of the register, e.g., an n-
bit register only supports n-bit writes, etc. Attempted writes of a different size than the
register width produce an error termination of the bus cycle and no change to the targeted
register.

Processor core type (PCT) register

The PCT is a 16-bit read-only register that specifies the architecture of the processor core in
the device. The state of this register is defined by a module input signal; it can only be read
from the IPS programming model. Any attempted write is ignored.

Figure 123. Processor core type (PCT) register

Address: Base + 0x0000 Access: User read-only
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R PCT[15:0]
we |] [[| [|

Reset 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 113. PCT field descriptions

Name Description

0-15 Processor Core Type
PCT[15:0] 0xEO12 identifies the zOH Power Architecture.

Revision (REV) register

The REV is a 16-bit read-only register specifying a revision number. The state of this
register is defined by an input signal; it can only be read from the IPS programming model.
Any attempted write is ignored.

Figure 124. Revision (REV) register

Address: Base + 0x0002 Access: User read-only
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R REV[15:0]
wi [[[[] [[] [[

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

288/936 Doc ID 16912 Rev 5 KYI

RMO0046

Error Correction Status Module (ECSM)

Table 114. REYV field descriptions
Name Description
0-15 Revision
REV[15:0] | The REV[15:0] field is specified by an input signal to define a software-visible revision number.
Platform XBAR Master Configuration (PLAMC)
The PLAMC is a 16-bit read-only register identifying the presence/absence of bus master
connections to the device’s AMBA-AHB Crossbar Switch (XBAR). The state of this register
is defined by a module input signal; it can only be read from the IPS programming model.
Any attempted write is ignored.
Figure 125. Platform XBAR Master Configuration (PLAMC) register
Address Base + 0x0004 Access: User read/—only‘
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
Rl 0 0 0 0 0 0 0 AMC[7:0]
w [[[[[[|
Reset 0 0 0 0 0 0 0 0 AMC[7:0]
Table 115. PLAMC field descriptions
Field Description
XBAR Master Configuration
AMCI7:0] |0 Bus master connection to XBAR input port n is not present.
1 Bus master connection to XBAR input port n is present.
Platform XBAR Slave Configuration (PLASC)
The PLASC is a 16-bit read-only register identifying the presence/absence of bus slave
connections to the device’s AMBA-AHB Crossbar Switch (XBAR), plus a 1-bit flag defining
the internal platform datapath width (DP64). The state of this register is defined by a module
input signal; it can only be read from the IPS programming model. Any attempted write is
ignored.
Figure 126. Platform XBAR Slave Configuration (PLASC) register
Address Base + 0x0006 Access: User read-only‘
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R|DP64| O 0 0 0 0 0 0 ASCJ[7:0]
w [[[[[[|
Reset 0 0 0 0 0 0 0 0 ASCI[7:0]

Doc ID 16912 Rev 5 289/936

Error Correction Status Module (ECSM)

RMO0046

Table 116. ASC field descriptions

Field Description
64-bit Datapath
DP64 |0 Datapath width is 32 bits.
1 Datapath width is 64 bits.
XBAR Slave Configuration
ASC[7:0] |0 Bus slave connection to XBAR output port n is not present.
1 Bus slave connection to XBAR output port nis present.

IPS Module Configuration (IMC) register

The IMC is a 32-bit read-only register identifying the presence/absence of the 32 low-order
IPS peripheral modules connected to the primary slave bus controller. The state of this
register is defined by a module input signal; it can only be read from the IPS programming
model. Any attempted write is ignored.

Figure 127. IPS Module Configuration (IMC) register
Address Base + 0x0008 Access: User read-only
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R MCI[31:16]
wi [[] [[] [[] [[]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R MCI15:0]
we [[[[[[[|
Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 117. IMC field descriptions
Field Description
0-31 IPS Module Configuration
MC[31:0] 0 IPS module connection to decoded slot n not present

1 IPS module connection to decoded slot n present

290/936

Miscellaneous Reset Status Register (MRSR)

The MRSR contains a bit for each of the reset sources to the device. An asserted bit
indicates the last type of reset that occurred. Only one bit is set at any time in the MRSR,
reflecting the cause of the most recent reset as signaled by device reset input signals. The
MRSR can only be read from the IPS programming model. Any attempted write is ignored.

Doc ID 16912 Rev 5

RMO0046

Error Correction Status Module (ECSM)

Figure 128. Miscellaneous Reset Status Register (MRSR)

Address: Base + 0x000F

Access: User read-only

0 1 2 3 4 5 6 7
R| POR DIR 0 0 0 0 0
w
Reset X X 0 0 0 0 0 0
Table 118. MRSR field descriptions
Field Description
0 Power-On Reset
0 Last recorded event was not caused by a power-on reset (based on a device input signal).
POR o .
1 Last recorded event was caused by a power-on reset (based on a device input signal).
1 Device Input Reset
0 Last recorded event was not caused by a device input reset.
DIR o
1 Last recorded event was a reset caused by a device input reset.

Miscellaneous Interrupt Register (MIR)

All interrupt requests associated with ECSM are collected in the MIR register. This includes
the processor core system bus fault interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt
source contained in the ECSMIR must be explicitly cleared.

Figure 129. Miscellaneous Interrupt Register (MIR)

Address: Base + 0x001F

Access: User read/write

0 1 2 3 4 5 6 7
R| FBOAI FBOSI FB1AI FB1SI 0 0 0 0
W 1 1 1 1 X X X X
Reset 0 0 0 0 0 0 0 0
Table 119. MIR field descriptions
Field Description
Flash Bank 0 Abort Interrupt
0 0 A flash bank 0 abort has not occurred.
FBOAI 1 A flash bank 0 abort has occurred. The interrupt request is negated by writing a 1 to this bit. Writing
a 0 has no effect.
Flash Bank 0 Stall Interrupt
1 0 A flash bank 0 stall has not occurred.
FBOSI |1 Aflash bank O stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing a
0 has no effect.
Flash Bank 1 Abort Interrupt
2 0 A flash bank 1 abort has not occurred.
FB1Al 1 A flash bank 1 abort has occurred. The interrupt request is negated by writing a 1 to this bit. Writing
a 0 has no effect.

Doc ID 16912 Rev 5 291/936

Error Correction Status Module (ECSM) RM0046

Table 119. MIR field descriptions (continued)

Field Description
Flash Bank 1 Stall Interrupt
3 0 A flash bank 1 stall has not occurred.
FB1SI 1 Aflash bank 1 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing a
0 has no effect.

Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register for user-defined control functions. It
provides configuration control for assorted modules on the device. The contents of this
register is output from the ECSM to other modules where these user-defined control
functions are implemented.

Figure 130. Miscellaneous User-Defined Control register (MUDCR)

Address Base + 0x0024 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rimupc| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w| R[31]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 120. MUDCR field descriptions

Name Description
XBAR force_round_robin bit
This bit is used to drive the force_round_robin bit of the XBAR. This forces the slaves into round
0 robin mode of arbitration rather than fixed mode (unless a master is using priority elevation, which
MUDCRI31 forces the design back into fixed mode regardless of this bit). By setting the hardware definition to
[31] | ENABLE_ROUND_ROBIN_RESET, this bit resets to 1.
0 XBAR is in fixed priority mode.
1 XBAR s in round robin mode.
292/936 Doc ID 16912 Rev 5 1S

RMO0046

Error Correction Status Module (ECSM)

ECC registers

There are a number of program-visible registers for the sole purpose of reporting and
logging of memory failures. These registers include the following:

® ECC Configuration Register (ECR)

ECC Status Register (ESR)

ECC Error Generation Register (EEGR)

Flash ECC Address Register (FEAR)

Flash ECC Master Number Register (FEMR)

Flash ECC Attributes Register (FEAT)

Flash ECC Data Register (FEDR)

RAM ECC Address Register (REAR)

RAM ECC Syndrome Register (RESR)

RAM ECC Master Number Register (REMR)

RAM ECC Attributes Register (REAT)

RAM ECC Data Register (REDR)

The details on the ECC registers are provided in the subsequent sections. If the design does

not include ECC on the memories, these addresses are reserved locations within the
ECSM'’s programming model.

ECC Configuration Register (ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of
memory errors are reported. In all systems with ECC, the occurrence of a non-correctable
error causes the current access to be terminated with an error condition. In many cases, this
error termination is reported directly by the initiating bus master. However, there are certain
situations where the occurrence of this type of non-correctable error is not reported by the
master. Examples include speculative instruction fetches, which are discarded due to a
change-of-flow operation, and buffered operand writes. The ECC reporting logic in the
ECSM provides an optional error interrupt mechanism to signal all non-correctable memory
errors. In addition to the interrupt generation, the ECSM captures specific information
(memory address, attributes and data, bus master number, etc.) that may be useful for
subsequent failure analysis.

The reporting of single-bit memory corrections can only be enabled via an SoC-configurable
module input signal. This signal is tied to 1 at SoC level and hence reporting of single-bit
memory corrections is always enabled. While not directly accessible to a user, this capability
is viewed as important for error logging and failure analysis.

Figure 131. ECC Configuration register (ECR)

Address: Base + 0x0043 Access: User read/write
0 1 2 3 4 5 6 7
R 0 0 0 0
W ER1BR EF1BR ERNCR EFNCR
Reset 0 0 0 0 0 0 0 0

Doc ID 16912 Rev 5 293/936

Error Correction Status Module (ECSM) RM0046

Table 121.

ECR field descriptions

Field

Description

Enable RAM 1-bit Reporting

This bit can only be set if the input enable signal is asserted. This signal is tied to 1 at SoC level and
hence reporting of single-bit memory corrections is always enabled. The occurrence of a single-bit

2 RAM correction generates a ECSM ECC interrupt request as signaled by the assertion of ESR[R1BC].
ER1BR | The address, attributes and data are also captured in the REAR, RESR, REMR, REAT and REDR
registers.
0 Reporting of single-bit RAM corrections disabled
1 Reporting of single-bit RAM corrections enabled
Enable Flash 1-bit Reporting
This bit can only be set if the input enable signal is asserted. This signal is tied to 1 at SoC level and
3 hence report.ing of single-bit memory corrections is always ena}bled. The occurrence of a single-bit
flash correction generates a ECSM ECC interrupt request as signaled by the assertion of ESR[F1BC].
EF1BR The address, attributes and data are also captured in the FEAR, FEMR, FEAT and FEDR registers.
OReporting of single-bit flash corrections disabled
1Reporting of single-bit flash corrections enabled
Enable RAM Non-Correctable Reporting
The occurrence of a non-correctable multi-bit RAM error generates a ECSM ECC interrupt request as
6 signaled by the assertion of ESR[RNCE]. The faulting address, attributes and data are also captured in
ERNCR |the REAR, RESR, REMR, REAT and REDR registers.
OReporting of non-correctable RAM errors disabled
1Reporting of non-correctable RAM errors enabled
Enable Flash Non-Correctable Reporting
The occurrence of a non-correctable multi-bit flash error generates a ECSM ECC interrupt request as
7 signaled by the assertion of ESR[FNCE]. The faulting address, attributes and data are also captured in
EFNCR |the FEAR, FEMR, FEAT and FEDR registers.

0 Reporting of non-correctable flash errors disabled
1 Reporting of non-correctable flash errors enabled

294/936

ECC Status Register (ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly
enabled ECC events have been detected. The ESR signals the last properly enabled
memory event to be detected. ECC interrupt generation is separated into single-bit error
detection/correction, uncorrectable error detection, and the combination of the two as
defined by the following boolean equations:
ECSM_ECC1BIT IRQ

= ECR[ER1BR] & ESR[R1BC]// ram, 1l-bit correction

| ECR[EF1BR] & ESR[F1BC]// flash, 1-bit correction
ECSM_ECCRNCR_IRQ

= ECR[ERNCR] & ESR[RNCE]// ram, noncorrectable error
ECSM_ECCFNCR_IRQ
ECR[EFNCR] & ESRI[FNCE]// flash, noncorrectable error
ECSM_ECC2BIT IRQ

= ECSM_ECCRNCR_IRQ // ram, noncorrectable error

| ECSM_ECCFNCR_IRQ // flash, noncorrectable error
ECSM_ECC_IRQ

= [ECSM_ECC1BIT IRQ // 1-bit correction

| ECSM_ECC2BIT IRQ // noncorrectable error

Doc ID 16912 Rev 5 KYI

RMO0046

Error Correction Status Module (ECSM)

where the combination of a properly enabled category in the ECR and the detection of the
corresponding condition in the ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This
preserves the association between the ESR and the corresponding address and attribute
registers, which are loaded on each occurrence of an properly enabled ECC event. If there
is a pending ECC interrupt and another properly enabled ECC event occurs, the ECSM
hardware automatically handles the ESR reporting, clearing the previous data and loading
the new state and thus guaranteeing that only a single flag is asserted.

To maintain the coherent software view of the reported event, the following sequence in the
ECSM error interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the
two values are different, go back to step 1 and repeat.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt
request.

Figure 132. ECC Status register (ESR)

Address: Base + 0x0047 Access: User read/write
0 1 2 3 4 5 6 7
R 0 0 0 0
W R1BC F1BC RNCE FNCE
Reset 0 0 0 0 0 0 0 0

Table 122. ESR field descriptions

Field Description
RAM 1-bit Correction
This bit can only be set if ECR[ER1BR] is asserted. The occurrence of a properly enabled single-bit
o RAM correction generates a ECSM ECC interrupt request. The address, attributes and data are also
captured in the REAR, RESR, REMR, REAT and REDR registers. To clear this interrupt flag, write a 1
R1BC to this bit. Writing a 0 has no effect.
0 No reportable single-bit RAM correction detected
1 Reportable single-bit RAM correction detected
Flash 1-bit Correction
This bit can only be set if ECR[EF1BR] is asserted. The occurrence of a properly enabled single-bit
3 flash correction generates a ECSM ECC interrupt request. The address, attributes and data are also
captured in the FEAR, FEMR, FEAT and FEDR registers. To clear this interrupt flag, write a 1 to this
F1BC bit. Writing a 0 has no effect.
0 No reportable single-bit flash correction detected
1 Reportable single-bit flash correction detected
1S7 Doc ID 16912 Rev 5 295/936

Error Correction Status Module (ECSM) RM0046

Table 122. ESR field descriptions (continued)

Field Description
RAM Non-Correctable Error
The occurrence of a properly enabled non-correctable RAM error generates a ECSM ECC interrupt
6 request. The faulting address, attributes and data are also captured in the REAR, RESR, REMR,
REAT and REDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
RNCE | This bit can only be set if ECRIERNCR] is asserted.
0 No reportable non-correctable RAM error detected
1 Reportable non-correctable RAM error detected
Flash Non-Correctable Error
The occurrence of a properly enabled non-correctable flash error generates a ECSM ECC interrupt
7 request. The faulting address, attributes and data are also captured in the FEAR, FEMR, FEAT and
ENCE FEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect. This bit can

only be set if ECR[ERNCR] is asserted.

0 No reportable non-correctable flash error detected
1 Reportable non-correctable flash error detected

In the event that multiple status flags are signaled simultaneously, ECSM records the event
with the R1BC as highest priority, then F1BC, then RNCE, and finally FNCE.

ECC Error Generation Register (EEGR)

The ECC error generation register is a 16-bit control register used to force the generation of
single- and double-bit data inversions in the memories with ECC, most notably the RAM.
This capability is provided for two purposes:

® It provides a software-controlled mechanism for injecting errors into the memories
during data writes to verify the integrity of the ECC logic.

® It provides a mechanism to allow testing of the software service routines associated
with memory error logging.

It should be noted that while the EEGR is associated with the RAM, similar capabilities exist
for the flash, that is, the ability to program the non-volatile memory with single- or double-bit
errors is supported for the same two reasons previously identified.

For both types of memories (RAM and flash), the intent is to generate errors during data
write cycles, such that subsequent reads of the corrupted address locations generate ECC
events, either single-bit corrections or double-bit non-correctable errors that are terminated
with an error response.

The enabling of these error generation modes requires the same input enable signal (as that
used to enable single-bit correction reporting) be asserted. This signal is tied to 1 at SoC
level and hence reporting of single-bit memory corrections is always enabled.

Figure 133. ECC Error Generation register (EEGR)

Address Base + 0x004A Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R 0 |FRC|FR11| O 0 |FRC | FR1 ,
wW 1Bl | BI NCI | NCI ERRBIT[6:0]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 ‘ 0 0 0 0

296/936

Doc ID 16912 Rev 5 KYI

RMO0046

Error Correction Status Module (ECSM)

Table 123. EEGR field descriptions

Field

Description

2
FRC1BI

Force RAM Continuous 1-Bit Data Inversions

0 No RAM continuous 1-bit data inversions generated

1 1-bit data inversions in the RAM continuously generated

The assertion of this bit forces the RAM controller to create 1-bit data inversions, as defined by the bit
position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be cleared
before being set again to properly re-enable the error generation logic.

This bit can only be set if the same input enable signal (as that used to enable single-bit correction
reporting) is asserted. This signal is tied to 1 at SoC level and hence reporting of single-bit memory
corrections is always enabled.

3
FR11BI

Force RAM One 1-bit Data Inversion

0 No RAM single 1-bit data inversion generated

1 One 1-bit data inversion in the RAM generated

The assertion of this bit forces the RAM controller to create one 1-bit data inversion, as defined by the bit
position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before being
set again to properly re-enable the error generation logic.

This bit can only be set if the same input enable signal (as that used to enable single-bit correction
reporting) is asserted. This signal is tied to 1 at SoC level and hence reporting of single-bit memory
corrections is always enabled.

6
FRCNCI

Force RAM Continuous Non-Correctable Data Inversions

0 No RAM continuous 2-bit data inversions generated

1 2-bit data inversions in the RAM continuously generated

The assertion of this bit forces the RAM controller to create 2-bit data inversions, as defined by the bit
position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write operation.
After this bit has been enabled to generate another continuous non-correctable data inversion, it must
be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.

Doc ID 16912 Rev 5 297/936

Error Correction Status Module (ECSM) RM0046

Table 123. EEGR field descriptions (continued)

Field Description
Force RAM One Non-Correctable Data Inversions
0 No RAM single 2-bit data inversions generated
1 One 2-bit data inversion in the RAM generated
The assertion of this bit forces the RAM controller to create one 2-bit data inversion, as defined by the bit
7 position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation after this bit is
FR1NCI |set.
The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.
After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set again
to properly re-enable the error generation logic.
Error Bit Position
The vector defines the bit position that is complemented to create the data inversion on the write
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity bit of
the ECC code are inverted.
The RAM controller follows a vector bit ordering scheme where LSB=0. Errors in the ECC syndrome bits
can be generated by setting this field to a value greater than the RAM width. For example, consider a 32-
bit RAM implementation.
The 32-bit ECC approach requires 7 code bits for a 32-bit word. For PRAM data width of 32 bits, the
actual SRAM (32 bits data + 7 bits for ECC) = 39 bits. The following association between the ERRBIT
9-15 |field and the corrupted memory bit is defined:
ERRBIT
[6:0] if ERRBIT = 0, then RAM[0] of the odd bank is inverted.
if ERRBIT = 1, then RAM[1] of the odd bank is inverted.
if ERRBIT = 31, then RAM[31] of the odd bank is inverted.
if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted.
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted.
if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted.
For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.
If an attempt to force a non-correctable inversion (by asserting EEGR[FRCNCI] or
EEGR[FRC1NCI]) and EEGR[ERRBIT] equals 64, then no data inversion will be generated.
The only allowable values for the 4 control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI}
are {0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in undefined
behavior.
Flash ECC Address Register (FEAR)
The FEAR is a 32-bit register for capturing the address of the last properly enabled ECC
event in the flash memory. Depending on the state of the ECC Configuration Register, an
ECC event in the flash causes the address, attributes and data associated with the access
to be loaded into the FEAR, FEMR, FEAT and FEDR registers, and the appropriate flag
(F1BC or FNCE) in the ECC Status Register to be asserted.
This register can only be read from the IPS programming model; any attempted write is
ignored.
298/936 Doc ID 16912 Rev 5 KY_I

RM0046 Error Correction Status Module (ECSM)
Figure 134. Flash ECC Address register (FEAR)
Address Base + 0x0050 Access: User read-only
0 1 2 3‘4 5 6 7‘8 9 10 11‘12 13 14 15
R FEAR[31:16]
we [[[| [[| [[|
Reset — — — —| = - - —| = - - —| = - — -
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R FEAR[15:0]
we [[[| [[| [[|
Reset — — — —| = - - —| = - - —| = - — -
Table 124. FEAR field descriptions
Field Description
0-31 Flash ECC Address Register
FEAR[31:0] This 32-bit register contains the faulting access address of the last properly enabled flash ECC
event.
Flash ECC Master Number Register (FEMR)
The FEMR is a 4-bit register for capturing the XBAR bus master number of the last properly
enabled ECC event in the flash memory. Depending on the state of the ECC Configuration
Register, an ECC event in the flash causes the address, attributes and data associated with
the access to be loaded into the FEAR, FEMR, FEAT and FEDR registers, and the
appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.
This register can only be read from the IPS programming model; any attempted write is
ignored.
Figure 135. Flash ECC Master Number Register (FEMR)
Address: Base + 0x0056 Access: User read-only
0 1 2 3 4 5 6 7
R 0 0 0 FEMR[3:0]
w | |
Reset 0 0 0 0 - - - -
Table 125. FEMR field descriptions
Name Description
47 Flash ECC Master Number Register
FEMRI3: This 4-bit register contains the XBAR bus master number of the faulting access of the last properly
[3:0]
enabled flash ECC event.

Flash ECC Attributes (FEAT) register

The FEAT is an 8-bit register for capturing the XBAR bus master attributes of the last
properly enabled ECC event in the flash memory. Depending on the state of the ECC

Doc ID 16912 Rev 5 299/936

Error Correction Status Module (ECSM)

RMO0046

Configuration Register, an ECC event in the flash causes the address, attributes and data
associated with the access to be loaded into the FEAR, FEMR, FEAT and FEDR registers,
and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Figure 136. Flash ECC Attributes (FEAT) Register
Address: Base + 0x0057

Access: User read-only

0 1 2 3 5 6 7
R| WRITE SIZE[2:0] PROTECTIONI3:0]
w | | | |
Reset 0 0 0 0 - - -
Table 126. FEAT field descriptions
Name Description
0 AMBA-AHB HWRITE
0 AMBA-AHB read access
WRITE 1 AMBA-AHB write access
AMBA-AHB HSIZE[2:0]
1-3 000 8-bit AMBA-AHB access
. 001 16-bit AMBA-AHB access
SIZE[2:0] 010 32-bit AMBA-AHB access
1xx Reserved
AMBA-AHB HPROT[3]
4

PROTECTION[3]

Protection[0]: Type
0 I-Fetch
1 Data

5
PROTECTION[2]

AMBA-AHB HPROT[2]

Protection[1]: Mode
0 User mode
1 Supervisor mode

6
PROTECTION[1]

AMBA-AHB HPROT[1]
Protection[2]: Bufferable
0 Non-bufferable

1 Bufferable

7
PROTECTION[O]

AMBA-AHB HPROT[0]
Protection[3]: Cacheable

0 Non-cacheable
1 Cacheable

Flash ECC Data Register (FEDR)

The FEDR is a 32-bit register for capturing the data associated with the last properly
enabled ECC event in the flash memory. Depending on the state of the ECC Configuration
Register, an ECC event in the flash causes the address, attributes and data associated with
the access to be loaded into the FEAR, FEMR, FEAT and FEDR registers, and the
appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

300/936

Doc ID 16912 Rev 5

574

RMO0046

Error Correction Status Module (ECSM)

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Figure 137. Flash ECC Data register (FEDR)

Address: Base + 0x005C

Access: User read-only

1 2 7 8 10 11 12 13 14 15

R FEDR[31:16]
w
Resett — — — - - - - - - - - - - - - -
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R FEDR[15:0]
w
Resett — — — - - - - - - - - - - - — -
Table 127. FEDR field descriptions
Name Description
0-31 Flash ECC Data Register
FEDR[31:0] This 32-bit register contains the data associated with the faulting access of the last properly
’ enabled flash ECC event. The register contains the data value taken directly from the data bus.
RAM ECC Address Register (REAR)
The REAR is a 32-bit register for capturing the address of the last properly enabled ECC
event in the RAM memory. Depending on the state of the ECC Configuration Register, an
ECC event in the RAM causes the address, attributes and data associated with the access
to be loaded into the REAR, RESR, REMR, REAT and REDR registers, and the appropriate
flag (R1BC or RNCE) in the ECC Status Register to be asserted.
This register can only be read from the IPS programming model; any attempted write is
ignored.
Figure 138. RAM ECC Address register (REAR)
Address: Base + 0x0060 Access: User read-only
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R REAR[31:16]
wl [[] [[] [[] [[]
Reset — — — -] = - - - = - - —| = - - -
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R REAR[15:0]
wi [[] [[] [[] [[]
Reset — — — -] = - - - = - - —| = - - -
1S7 Doc ID 16912 Rev 5 301/936

Error Correction Status Module (ECSM) RM0046

Table 128. REAR field descriptions
Name Description
0-31 RAM ECC Address Register
REARJ[31:0] | This 32-bit register contains the faulting access address of the last properly enabled RAM ECC event.

RAM ECC Syndrome Register (RESR)

The RESR is an 8-bit register for capturing the error syndrome of the last properly enabled
ECC event in the RAM memory. Depending on the state of the ECC Configuration Register,
an ECC event in the RAM causes the address, attributes and data associated with the
access to be loaded into the REAR, RESR, REMR, REAT and REDR registers, and the
appropriate flag (R1BC or RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Figure 139. RAM ECC Syndrome Register (RESR)

Address: Base + 0x0065 Access: User read-only

Reset — — — — — — —

Table 129.

0 1 2 3 ‘ 4 5 6 7
R RESR[7:0]

w |

RESR field descriptions

Name

Description

0-7
RESR[7:0]

RAM ECC Syndrome Register

This 8-bit syndrome field includes 6 bits of Hamming decoded parity plus an odd-parity bit for the
entire 39-bit (32-bit data + 7 ECC) code word. The upper 7 bits of the syndrome specify the exact bit
position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit
syndrome plus overall incorrect parity bit signal a multi-bit, non-correctable error.

For correctable single-bit errors, the mapping shown in Table 130 associates the upper 7 bits of the
syndrome with the data bit in error.

Note:

302/936

Table 130 associates the upper 7 bits of the ECC syndrome with the exact data bit in error
for single-bit correctable codewords. This table follows the bit vectoring notation where the
LSB=0. Note that the syndrome value of 0x0001 implies no error condition but this value is
not readable when the PRESR is read for the no error case.

Table 130. RAM syndrome mapping for single-bit correctable errors

RESR[7:0] Data Bit in Error
0x00 ECC ODD[0]
0x01 No Error
0x02 ECC ODD[1]
0x04 ECC ODD[2]
Doc ID 16912 Rev 5 KY_I

RMO0046

Error Correction Status Module (ECSM)

Table 130. RAM syndrome mapping for single-bit correctable errors (continued)

RESR[7:0] Data Bit in Error
0x06 DATA ODD BANKJ[31]
0x08 ECC ODDJ[3]
0x0A DATA ODD BANK([30]
0x0C DATA ODD BANK[29]
Ox0E DATA ODD BANK]28]
0x10 ECC ODD[4]
0x12 DATA ODD BANK][27]
0x14 DATA ODD BANK]26]
0x16 DATA ODD BANK]25]
0x18 DATA ODD BANK][24]
Ox1A DATA ODD BANK]23]
0x1C DATA ODD BANK][22]
0x50 DATA ODD BANKI[21]
0x20 ECC ODD[5]
0x22 DATA ODD BANK]20]
0x24 DATA ODD BANK]19]
0x26 DATA ODD BANK]18]
0x28 DATA ODD BANK][17]
0x2A DATA ODD BANK([16]
0x2C DATA ODD BANK][15]
0x58 DATA ODD BANK]14]
0x30 DATA ODD BANK]13]
0x32 DATA ODD BANK][12]
0x34 DATA ODD BANK][11]
0x64 DATA ODD BANK]10]
0x38 DATA ODD BANK([9]
0x62 DATA ODD BANK]8]
0x70 DATA ODD BANK([7]
0x60 DATA ODD BANK]6]
0x40 ECC ODDI[6]
0x42 DATA ODD BANK([5]
0x44 DATA ODD BANK([4]
0x46 DATA ODD BANK([3]
0x48 DATA ODD BANK[2]
0x4A DATA ODD BANK][1]

Doc ID 16912 Rev 5

303/936

Error Correction Status Module (ECSM) RM0046

Table 130. RAM syndrome mapping for single-bit correctable errors (continued)

RESR[7:0] Data Bit in Error

0x4C DATA ODD BANK]O0]
0x03,0x05........ 0x4D Multiple bit error
> 0x4D Multiple bit error

RAM ECC Master Number Register (REMR)

The REMR is an 8-bit register in which the 4-bit field REMR[0:3] is used for capturing the
XBAR bus master number of the last properly enabled ECC event in the RAM memory.
Depending on the state of the ECC Configuration Register, an ECC event in the RAM
causes the address, attributes and data associated with the access to be loaded into the
REAR, RESR, REMR, REAT and REDR registers, and the appropriate flag (R1BC or
RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Figure 140. RAM ECC Master Number register (REMR)

Address: Base + 0x0066 Access: User read-only
0 1 2 3 4 5 6 7
R 0 0 0 0 REMR[3:0]
w | |
Reset 0 0 0 0 — — — —

Table 131. REMR field descriptions

Name Description

47 RAM ECC Master Number Register

REMR[3:0] This 4-bit field contains the XBAR bus master number of the faulting access of the last properly
’ enabled RAM ECC event.

RAM ECC Attributes (REAT) register

The REAT is an 8-bit register for capturing the XBAR bus master attributes of the last
properly enabled ECC event in the RAM memory. Depending on the state of the ECC
Configuration Register, an ECC event in the RAM causes the address, attributes and data
associated with the access to be loaded into the REAR, RESR, REMR, REAT and REDR

registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to be
asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

304/936 Doc ID 16912 Rev 5 KYI

RMO0046

Error Correction Status Module (ECSM)

Figure 141. RAM ECC Attributes (REAT) register

Address: Base + 0x0067

0 1

Access: User read/write

5 6

7

R

WRITE

SIZE[2:0]

PROTECTION[3:0]

W

|

Reset

Table 132. REAT field descriptions

PROTECTION[3]

Protection[0]: Type
0 I-Fetch
1 Data

Name Description
0 AMBA-AHB HWRITE
0 AMBA-AHB read access
WRITE 1 AMBA-AHB write access
AMBA-AHB HSIZE[2:0]
1-3 000 8-bit AMBA-AHB access
. 001 16-bit AMBA-AHB access
SIZE[2:0] 010 32-bit AMBA-AHB access
1xx Reserved
AMBA-AHB HPROTJ3]
4

5
PROTECTION[2]

AMBA-AHB HPROT[2]
Protection[1]: Mode

0 User mode

1 Supervisor mode

6
PROTECTION[1]

AMBA-AHB HPROT][1]
Protection[2]: Bufferable
0 Non-bufferable

1 Bufferable

7
PROTECTION[O]

AMBA-AHB HPROT][0]
Protection[3]: Cacheable

0 Non-cacheable
1 Cacheable

RAM ECC Data Register (REDR)

The REDR is a -bit register for capturing the data associated with the last properly enabled
ECC event in the RAM memory. Depending on the state of the ECC Configuration Register,
an ECC event in the RAM causes the address, attributes and data associated with the
access to be loaded into the REAR, RESR, REMR, REAT and REDR registers, and the

appropriate flag (R1BC or RNCE) in the ECC Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Doc ID 16912 Rev 5

305/936

Error Correction Status Module (ECSM)

RMO0046

Figure 142. Platform RAM ECC Data register (PREDR)

Address: Base + 0x006C

123‘4567‘8

Access: User read-only

0 9 10 11 12 13 14 15
R REDRI[31:16]
we O[] [[] |
Reset — — — -] - - - -] - - - -] - - - =
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 28 29 30 31
R REDRJ[15:0]
we O[] [[] |
Reset — — — -] - - - -] - - - -] - - - =
Table 133. REDR field descriptions
Name Description
0-31 RAM ECC Data Register
REDR([31:0] This 32-bit register contains the data associated with the faulting access of the last properly

enabled RAM ECC event. The register contains the data value taken directly from the data bus.

1543 ECSM_reg_protection

The ECSM_reg_protection logic provides hardware enforcement of supervisor mode access

protection for four on-platform IPS modules: INTC, ECSM, STM, and SWT. This logic
resides between the on-platform bus sourced by the PBRIDGE bus controller and the

individual slave modules. It monitors the bus access type (supervisor or user) and if a user
access is attempted, the transfer is terminated with an error and inhibited from reaching the
slave module. Identical logic is replicated for each of the five, targeted slave modules. A

block diagram of the ECSM_reg_protection module is shown in Figure 143.

306/936

Doc ID 16912 Rev 5

RM0046 Error Correction Status Module (ECSM)

A
Y

INTC

ips_supervisor_access

>

A
\

> ECSM

A
Y

PBRIDGE ECSM_REG_PROTECTION

A
Y

ST™M

A
Y

SWT

Figure 143. Spp_Ips_Reg_Protection block diagram

Attempted accesses to reserved addresses result in an error termination, while attempted
writes to read-only registers are ignored and do not terminate with an error. Unless noted
otherwise, writes to the programming model must match the size of the register; for
example, an n-bit register only supports n-bit writes, etc. Attempted writes of a different size
than the register width produce an error termination of the bus cycle and no change to the
targeted register.

KYI Doc ID 16912 Rev 5 307/936

Internal Static RAM (SRAM) RM0046

16

16.1

16.2

16.3

16.4

16.5

308/936

Internal Static RAM (SRAM)

Introduction

The general-purpose SRAM has a size of 20 KB.

The SRAM provides the following features:

® SRAM can be read/written from any bus master

® Byte, halfword, word and doubleword addressable
® Single-bit correction and double-bit error detection

SRAM operating mode

The SRAM has only one operating mode. No standby mode is available.

Table 134. SRAM operating modes

Mode Configuration

Normal (functional) Allows reads and writes of SRAM

Module memory map
The SRAM occupies up to 20 KB of address space.
Table 135 shows the SRAM memory map.

Table 135. SRAM memory map
Address Use

0x4000_0000 (Base) 20 KB RAM

Register descriptions

The SRAM has no registers. Registers associated with the ECC are located in the ECSM.
See Section, “ECC registers.

SRAM ECC mechanism

The SRAM ECC detects the following conditions and produces the following results:

® Detects and corrects all 1-bit errors

® Detects and flags all 2-bit errors as non-correctable errors

® Detects 39-bit reads (32-bit data bus plus the 7-bit ECC) that return all zeros or all
ones, asserts an error indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than 2 bits.

Doc ID 16912 Rev 5 KYI

RM0046 Internal Static RAM (SRAM)
Internal SRAM write operations are performed on the following byte boundaries:
® 1 byte (0:7 bits)
® 2 bytes (0:15 bits)
® 4 bytes or 1 word (0:31 bits)
If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is
calculated across the 32-bit data bus. The 8-bit ECC is appended to the data segment and
written to SRAM.
If the write operation is less than the entire 32-bit data width (1 or 2-byte segment), the
following occurs:
1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either
correcting or flagging errors.
2. The write data bytes (1 or 2-byte segment) are merged with the corrected 32 bits on the
data bus.
3. The ECC is then calculated on the resulting 32 bits formed in the previous step.
4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value
is then written to SRAM.
16.5.1 Access timing

The system bus is a two-stage pipelined bus that makes the timing of any access dependent
on the access during the previous clock. Table 136 lists the various combinations of read
and write operations to SRAM and the number of wait states used for the each operation.
The table columns contain the following information:

® Current operation—Lists the type of SRAM operation currently executing

® Previous operation—Lists the valid types of SRAM operations that can precede the
current SRAM operation (valid operation during the preceding clock)

® Wait states—Lists the number of wait states (bus clocks) the operation requires, which
depends on the combination of the current and previous operation

Table 136. Number of wait states required for SRAM operations

Operation type Current operation Previous operation Number of wait states required

Read

Idle

Pipelined read

Read 0
(read from the same address)
8, 16 or 32-bit write

1
(read from a different address)

Pipelined read Read 0

Doc ID 16912 Rev 5 309/936

Internal Static RAM (SRAM) RM0046

Table 136.

Number of wait states required for SRAM operations (continued)

Operation type Current operation Previous operation Number of wait states required

Write

Idle
Read

8 or 16-bit write Pipelined 8- or 16-bit write »

32-bit write

0

8 or 16-bit write (write to the same address)

Pipelined 8, 16 or 32-bit write 8, 16 or 32-bit write 0
Idle
32-bit write 32-bit write 0
Read

16.5.2

16.6

16.7

Note:

310/936

Reset effects on SRAM accesses

Asynchronous reset will possibly corrupt RAM if it asserts during a read or write operation to
SRAM. The completion of that access depends on the cycle at which the reset occurs. If no
access is occurring when reset occurs, RAM corruption does not happen.

Instead synchronous reset (SW reset) should be used in controlled function (without RAM
accesses) in case initialization procedure is needed without RAM initialization.

Functional description

ECC checks are performed during the read portion of an SRAM ECC read/write (R/W)
operation, and ECC calculations are performed during the write portion of a R/W operation.
Because the ECC bits can contain random data after the device is powered on, the SRAM
must be initialized by executing 32-bit write operations prior any read accesses. This is also
true for implicit read accesses caused by any write accesses smaller than 32 bits as
discussed in Section 16.5, “'SRAM ECC mechanism.

Initialization and application information

To use the SRAM, the ECC must check all bits that require initialization after power on. All
writes must specify an even number of registers performed on 32-bit word-aligned
boundaries. If the write is not the entire 32-bits (8 or 16 bits), a read/modify/write operation
is generated that checks the ECC value upon the read. Refer to Section 16.5, “SRAM ECC
mechanism.

You must initialize SRAM, even if the application does not use ECC reporting.

Doc ID 16912 Rev 5 KYI

RMO0046 Flash Memory

17 Flash Memory

17.1 Introduction

The Flash memory comprises a platform Flash controller interface and two Flash memory
arrays: one array of 256 KB for code (code Flash) and one array of 64 KB for data (data
Flash). The Flash architecture of the SPC560P40/34 device is illustrated in Figure 144.

AHB CROSSBAR SWITCH

AHB ports 32

4x128 Page Buffer 1x128 Page Buffer

PFlash Controller

f
Y

)
Y

256 KB 64 KB
Code Flash Data Flash
Array O Array O
BankO (code Flash) Bank1 (data Flash)

Figure 144. SPC560P40/34 Flash memory architecture

17.2 Platform Flash controller

17.2.1 Introduction

This section provides an introduction of the platform Flash controller, which acts as the
interface between the system bus and as many as two banks of Flash memory arrays
(program and data). It intelligently converts the protocols between the system bus and the
dedicated Flash array interfaces. Several important terms are used to describe the platform
Flash controller module and its connections. These terms are defined here.

® Port—This term describes the AMBA-AHB connection(s) into the platform Flash
controller. From an architectural and programming model viewpoint, the definition
supports as many as two AHB ports, even though this specific controller only supports
a single AHB connection.

® Bank—This term describes the attached Flash memories. From the platform Flash
controller’'s perspective, there may be one or two attached banks of Flash memory. The
code Flash bank is required and always attached to bankO. Additionally, there is a data
Flash attached to bank1. The platform Flash controller interface supports two separate

K‘YI Doc ID 16912 Rev 5 311/936

Flash Memory RMO0046

312/936

connections, one to each memory bank. On the SPC560P40/34 device, bank0 and
bank1 are internal to the device.

® Array—Each memory bank has one Flash array instantiation.

® Page—This value defines the number of bits read from the Flash array in a single
access. For this controller and memory, the page size is 128 bits (16 bytes).

The nomenclature “page buffers” and “line buffers” are used interchangeably.

Overview

The platform Flash controller supports a 32-bit data bus width at the AHB port and
connections to 128-bit read data interfaces from two memory banks, where each bank
contains one instantiation of the Flash memory array. One Flash bank is connected to the
code Flash memory and the other bank is connected to the data Flash memory. The
memory controller capabilities vary between the two banks with each bank’s functionality
optimized with the typical use cases associated with the attached Flash memory. As an
example, the platform Flash controller logic associated with the code Flash bank contains a
four-entry “page” buffer, each entry containing 128 bits of data (1 Flash page) plus an
associated controller that prefetches sequential lines of data from the Flash array into the
buffer, while the controller logic associated with the data Flash bank only supports a 128-bit
register that serves as a temporary page holding register and does not support any
prefetching. Prefetch buffer hits from the code Flash bank support 0-wait AHB data phase
responses. AHB read requests that miss the buffers generate the needed Flash array
access and are forwarded to the AHB upon completion, typically incurring two wait states at
an operating frequency of 60 to 64 MHz.

This memory controller is optimized for applications where a cacheless processor core, for
example the Power e200z0h, is connected through the platform to on-chip memories, for
example Flash and RAM, where the processor and platform operate at the same frequency.
For these applications, the 2-stage pipeline AMBA-AHB system bus is effectively mapped
directly into stages of the processor’s pipeline and 0 wait state responses for most memory
accesses are critical for providing the required level of system performance.

Features

The following list summarizes the key features of the platform Flash controller:

® Single AHB port interface supports a 32-bit data bus. All AHB aligned and unaligned
reads within the 32-bit container are supported. Only aligned word writes are
supported.

® Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each
bank.

® Interface with code Flash (bank0) provides configurable read buffering and page
prefetch support. Four page read buffers (each 128 bits wide) and a prefetch controller
support single-cycle read responses (0 AHB data phase wait states) for hits in the
buffers. The buffers implement a least-recently-used replacement algorithm to
maximize performance.

® Interface with data Flash (bank1) includes a 128-bit register to temporarily hold a single
Flash page. This logic supports single-cycle read responses (0 AHB data phase wait

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

17.2.2

17.2.3

17.2.4

Note:

states) for accesses that hit in the holding register. There is no support for prefetching
associated with bank1.

® Programmable response for read-while-write sequences including support for stall-
while-write, optional stall notification interrupt, optional Flash operation termination,
and optional termination notification interrupt

® Separate and independent configurable access timing (on a per bank basis) to support
use across a wide range of platforms and frequencies

® Support of address-based read access timing for emulation of other memory types
® Support for reporting of single- and multi-bit Flash ECC events
® Typical operating configuration loaded into programming model by system reset

Modes of operation

The platform Flash controller module does not support any special modes of operation. Its
operation is driven from the AMBA-AHB memory references it receives from the platform’s
bus masters. Its configuration is defined by the setting of the programming model registers,
physically located as part of the Flash array modules.

External signal descriptions

The platform Flash controller does not directly interface with any external signals. Its primary
internal interfaces include a connection to an AMBA-AHB crossbar (or memory protection
unit) slave port and connections with as many as two banks (code and data) of Flash
memory, each containing one instantiation of the Flash array. Additionally, the operating
configuration for the platform Flash controller is defined by the contents of certain code
Flash array0 registers that are inputs to the module.

Memory map and registers description

Two memory maps are associated with the platform Flash controller: one for the Flash
memory space and another for the program-visible control and configuration registers. The
Flash memory space is accessed via the AMBA-AHB port. The program-visible registers
are accessed via the slave peripheral bus. Details on both memory spaces are provided in
Section , “Memory map.

There are no program-visible registers that physically reside inside the platform Flash
controller. Rather, the platform Flash controller receives control and configuration
information from the Flash array controller(s) to determine the operating configuration.
These are part of the Flash array’s configuration registers mapped into its slave peripheral
(IPS) address space but are described here.

Updating the configuration fields that control the platform flash controller behavior should
only occur while the flash controller is idle. Changing configuration settings while a flash
access is in progress can lead to non-deterministic behavior.

Memory map

First, consider the Flash memory space accessed via transactions from the platform Flash
controller's AHB port. To support the two separate Flash memory banks, the platform Flash
controller uses address bit 23 (haddr[23]) to steer the access to the appropriate memory
bank. In addition to the actual Flash memory regions, there are shadow and test sectors
included in the system memory map. The program-visible control and configuration registers
associated with each memory array are included in the slave peripheral address region. The

Doc ID 16912 Rev 5 313/936

Flash Memory

RMO0046

Caution:

Note:

system memory map defines one code Flash array and one data Flash array. See
Table 137.

Software executing from flash memory must not write to registers that control flash behavior
(such as wait state settings or prefetch enable/disable). Doing so can cause data corruption.
On this chip, these registers include PFCRO and PFAPR.

Flash memory configuration registers should be written only with 32-bit write operations to
avoid any issues associated with register incoherency caused by bit fields spanning smaller
size (8-, 16-bit) boundaries.

Table 137. Flash-related regions in the system memory map

Start address End address (SK'T;) Region
0x0000_0000 0x0007_FFFF 512 | Code Flash array 0

0x0008_0000 0x001F_FFFF 1536 |Reserved

0x0020_0000 0x0020_3FFF 16 Code Flash array 0: shadow sector
0x0020_4000 0x003F_FFFF 2032 |Reserved

0x0040_0000 0x0040_3FFF 16 Code Flash array 0: test sector
0x0040_4000 0x007F_FFFF 4080 |Reserved

0x0080_0000 0x0080_FFFF 64 Data Flash array 0

0x0081_0000 0x00CO_1FFF 4040 |Reserved

0x00C0_2000 0x00CO_3FFF 8 Data Flash array O: test sector
0x00C0_4000 OX00FF_FFFF 4080 |Reserved

0x0100_0000 Ox1FFF_FFFF 507904 | Emulation Mapping

OxFFE8_8000 OxFFE8_BFFF 16 Code Flash array 0 configuration“)
OxFFE8_CO000 OxFFE8_FFFF 16 Data Flash array 0 configuration“)
OxFFEB_0000 OxFFEB_BFFF 48 Reserved

. This region is also aliased to address 0xC3F8_nnnn.

314/936

For additional information on the address-based read access timing for emulation of other
memory types, see Section 17.2.17, “Wait state emulation.

Next, consider the memory map associated with the control and configuration registers.

There are multiple registers that control operation of the platform Flash controller. Note the
first two Flash array registers (PFCRO, PFCR1) are reset to a device-defined value, while
the remaining register (PFAPR) is loaded at reset from specific locations in the array’s
shadow region.

Regardless of the number of populated banks or the number of Flash arrays included in a
given bank, the configuration of the platform Flash controller is wholly specified by the
platform Flash controller control registers associated with code Flash array0. The code
arrayO register settings define the operating behavior of both Flash banks. It is
recommended to set the platform Flash controller control registers for both arrays to the
array0 values.

574

Doc ID 16912 Rev 5

RMO0046

Flash Memory

Note:

17.2.5

17.2.6

To perform program and erase operations, the control registers in the actual referenced
Flash array must both be programmed, but the configuration of the platform Flash controller
module is defined by the platform Flash controller control registers of code arrayO.

The 32-bit memory map for the platform Flash controller control registers is shown in
Table 138.

Table 138. Platform Flash controller 32-bit memory map

Offset from
PFlash_BASE Register Location
(0xFFES8_8000)

0x001C Platform Flash Configuration Register 0 (PFCRO) on page 17-353
0x0020 Platform Flash Configuration Register 1 (PFCR1) on page 17-357
0x0024 Platform Flash Access Protection Register (PFAPR) | on page 17-359

Functional description

The platform Flash controller interfaces between the AHB-Lite 2.v6 system bus and the
Flash memory arrays.

The platform Flash controller generates read and write enables, the Flash array address,
write size, and write data as inputs to the Flash array. The platform Flash controller captures
read data from the Flash array interface and drives it onto the AHB. As much as four pages
of data (128-bit width) from bank0 are buffered by the platform Flash controller. Lines may
be prefetched in advance of being requested by the AHB interface, allowing single-cycle (0
AHB wait states) read data responses on buffer hits.

Several prefetch control algorithms are available for controlling page read buffer fills.
Prefetch triggering may be restricted to instruction accesses only, data accesses only, or
may be unrestricted. Prefetch triggering may also be controlled on a per-master basis.

Buffers may also be selectively enabled or disabled for allocation by instruction and data
prefetch.

Access protections may be applied on a per-master basis for both reads and writes to
support security and privilege mechanisms.

Throughout this discussion, bkn_is used as a prefix to refer to two signals, each for each
bank: bk0_ and bk1_. Also, the nomenclature Bx_Py_RegName is used to reference a
program-visible register field associated with bank “x” and port “y”.

Basic interface protocol

The platform Flash controller interfaces to the Flash array by driving addresses
(bkn_fl_addr[23:0]) and read or write enable signals (bkn_fl_rd_en, bkn_fl_wr_en).

The read or write enable signal (bkn_fl_rd_en, bkn_fl_wr_en) is asserted in conjunction with
the reference address for a single rising clock when a new access request is made.

Addresses are driven to the Flash array in a flow-through fashion to minimize array access
time. When no outstanding access is in progress, the platform Flash controller drives
addresses and asserts bkn_fl_rd_en or bkn_fl_wr_en and then may change to the next
outstanding address in the next cycle.

Doc ID 16912 Rev 5 315/936

Flash Memory RMO0046

17.2.7

17.2.8

17.2.9

316/936

Accesses are terminated under control of the appropriate read/write wait state control
setting. Thus, the access time of the operation is determined by the settings of the wait state
control fields. Access timing can be varied to account for the operating conditions of the
device (frequency, voltage, temperature) by appropriately setting the fields in the
programming model for either bank.

The platform Flash controller also has the capability of extending the normal AHB access
time by inserting additional wait states for reads and writes. This capability is provided to
allow emulation of other memories that have different access time characteristics. The
added wait state specifications are provided by bit 28 to bit 24 of Flash address
(haddr[28:24], see Table 140 and Table 141). These wait states are applied in addition to the
normal wait states incurred for Flash accesses. Refer to Section 17.2.17, “Wait state
emulation for more details.

Prefetching of next sequential page is blocked when haddr[28:24] is non-zero. Buffer hits are
also blocked as well, regardless of whether the access corresponds to valid data in one of
the page read buffers. These steps are taken to ensure that timing emulation is correct and
that excessive prefetching is avoided. In addition, to prevent erroneous operation in certain
rare cases, the buffers are invalidated on any non-sequential AHB access with a non-zero
value on haddr[28:24].

Access protections

The platform Flash controller provides programmable configurable access protections for
both read and write cycles from masters via the Platform Flash Access Protection Register
(PFAPR). It allows restriction of read and write requests on a per-master basis. This
functionality is described in Section , “Platform Flash Access Protection Register (PFAPR).
Detection of a protection violation results in an error response from the platform Flash
controller on the AHB transfer.

Read cycles — buffer miss

Read cycles from the Flash array are initiated by driving a valid access address on
bkn_fl_addr[23:0] and asserting bkn_fl_rd_en for the required setup (and hold) time before
(and after) the rising edge of hclk. The platform Flash controller then waits for the
programmed number of read wait states before sampling the read data on
bkn_fl_rdata[127:0]. This data is normally stored in the least-recently updated page read
buffer for bankO0 in parallel with the requested data being forwarded to the AHB. For bank1,
the data is captured in the page-wide temporary holding register as the requested data is
forwarded to the AHB bus. Timing diagrams of basic read accesses from the Flash array are
shown in Figure 145 through Figure 148.

If the Flash access was the direct result of an AHB transaction, the page buffer is marked as
most-recently-used as it is being loaded. If the Flash access was the result of a speculative
prefetch to the next sequential ling, it is first loaded into the least-recently-used buffer. The
status of this buffer is not changed to most-recently-used until a subsequent buffer hit
occurs.

Read cycles — buffer hit

Single cycle read responses to the AHB are possible with the platform Flash controller when
the requested read access was previously loaded into one of the bankO page buffers. In
these “buffer hit” cases, read data is returned to the AHB data phase with a 0 wait state
response.

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

17.2.10

17.2.11

17.2.12

Likewise, the bank1 logic includes a single 128-bit temporary holding register and
sequential accesses that “hit” in this register are also serviced with a 0 wait state response.

Write cycles

In a write cycle, address, write data, and control signals are launched off the same edge of
hclk at the completion of the first AHB data phase cycle. Write cycles to the Flash array are
initiated by driving a valid access address on bkn_fl_addr[23:0], driving write data on
bkn_fl_wdata[63:0], and asserting bkn_fl_wr_en. Again, the controller drives the address
and control information for the required setup time before the rising edge of hclk, and
provides the required amount of hold time. The platform Flash controller then waits for the
appropriate number of write wait states before terminating the write operation. On the cycle
following the programmed wait state value, the platform Flash controller asserts hready_out
to indicate to the AHB port that the cycle has terminated.

Error termination

The platform Flash controller follows the standard procedure when an AHB bus cycle is
terminated with an ERROR response. First, the platform Flash controller asserts hresp[0]
and negates hready_out to signal an error has occurred. On the following clock cycle, the
platform Flash controller asserts hready_out and holds both hresp[0] and hready_out
asserted until hready_in is asserted.

The first case that can cause an error response to the AHB is when an access is attempted
by an AHB master whose corresponding Read Access Control or Write Access Control
settings do not allow the access, thus causing a protection violation. In this case, the
platform Flash controller does not initiate a Flash array access.

The second case that can cause an error response to the AHB is when an access is
performed to the Flash array and is terminated with a Flash error response. See

Section 17.2.13, “Flash error response operation. This may occur for either a read or a write
operation.

The third case that can cause an error response to the AHB is when a write access is
attempted to the Flash array and is disallowed by the state of the bkn_fl_ary_access control
input. This case is similar to case 1.

A fourth case involves an attempted read access while the Flash array is busy doing a write
(program) or erase operation if the appropriate read-while-write control field is programmed
for this response. The 3-bit read-while-write control allows for immediate termination of an
attempted read, or various stall-while-write/erase operations are occurring.

The platform Flash controller can also terminate the current AHB access if hready_in is
asserted before the end of the current bus access. While this circumstance should not
occur, this does not result in an error condition being reported, as this behavior is initiated by
the AHB. In this circumstance, the platform Flash controller control state machine completes
any Flash array access in progress (without signaling the AHB) before handling a new
access request.

Access pipelining

The platform Flash controller does not support access pipelining since this capability is not
supported by the Flash array. As a result, the APC (Address Pipelining Control) field should
typically be the same value as the RWSC (Read Wait State Control) field for best
performance, that is, BKn_APC = BKn_RWSC. It cannot be less than the RWSC.

Doc ID 16912 Rev 5 317/936

Flash Memory RMO0046

17.2.13

17.2.14

318/936

Flash error response operation

The Flash array may signal an error response by asserting bkn_fl_xfr_err to terminate a
requested access with an error. This may occur due to an uncorrectable ECC error, or
because of improper sequencing during program/erase operations. When an error response
is received, the platform Flash controller does not update or validate a bank0 page read
buffer nor the bank1 temporary holding register. An error response may be signaled on read
or write operations. For more information on the specifics related to signaling of errors,
including Flash ECC, refer to subsequent sections in this chapter. For additional information
on the system registers that capture the faulting address, attributes, data and ECC
information, see 15, “Error Correction Status Module (ECSM).

BankO page read buffers and prefetch operation

The logic associated with bank0 of the platform Flash controller contains four 128-bit page
read buffers that hold data read from the Flash array. Each buffer operates independently,
and is filled using a single array access. The buffers are used for both prefetch and normal
demand fetches.

The organization of each page buffer is described as follows in a pseudo-code
representation. The hardware structure includes the buffer address and valid bit, along with
128 bits of page read data and several error flags.

struct { // bk0_page buffer
reg addr([23:4];// page address
reg valid; // valid bit

reg rdatall27:0];// page read data
reg xfr error; // transfer error indicator from Flash array
reg multi ecc error;// multi-bit ECC error indicator from Flash array
reg single ecc_error;// single-bit correctable ECC indicator from
Flash array
} bk0 page buffer[4];

For the general case, a page buffer is written at the completion of an error-free Flash access
and the valid bit asserted. Subsequent Flash accesses that “hit” the buffer, that is, the
current access address matches the address stored in the buffer, can be serviced in 0 AHB
wait states as the stored read data is routed from the given page buffer back to the
requesting bus master.

As noted in Section 17.2.13, “Flash error response operation a page buffer is not marked as
valid if the Flash array access terminated with any type of transfer error. However, the result
is that Flash array accesses that are tagged with a single-bit correctable ECC event are
loaded into the page buffer and validated. For additional comments on this topic, see
Section , “Buffer invalidation.

Prefetch triggering is controllable on a per-master and access-type basis. Bus masters may
be enabled or disabled from triggering prefetches, and triggering may be further restricted
based on whether a read access is for instruction or data. A read access to the platform
Flash controller may trigger a prefetch to the next sequential page of array data on the first
idle cycle following the request. The access address is incremented to the next-higher 16-
byte boundary, and a Flash array prefetch is initiated if the data is not already resident in a
page buffer. Prefetched data is always loaded into the least-recently-used buffer.

Buffers may be in one of six states, listed here in prioritized order:

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

1. Invalid—the buffer contains no valid data.

2. Used—the buffer contains valid data that has been provided to satisfy an AHB burst
type read.

3. Valid—the buffer contains valid data that has been provided to satisfy an AHB single
type read.

4. Prefetched—the buffer contains valid data that has been prefetched to satisfy a
potential future AHB access.

5. Busy AHB—the buffer is currently being used to satisfy an AHB burst read.

6. Busy Fill—the buffer has been allocated to receive data from the Flash array, and the
array access is still in progress.

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are
multiple invalid buffers, the one to be used is selected using a simple numeric priority,
where buffer 0 is selected first, then buffer 1, etc.

2. Ifthere are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate page buffer has been selected, the Flash array is accessed and read
data loaded into the buffer. If the buffer load was in response to a miss, the just-loaded
buffer is immediately marked as most-recently-used. If the buffer load was in response to a
speculative fetch to the next-sequential line address after a buffer hit, the recently-used
status is not changed. Rather, it is marked as most-recently-used only after a subsequent
buffer hit.

This policy maximizes performance based on reference patterns of Flash accesses and
allows for prefetched data to remain valid when non-prefetch enabled bus masters are
granted Flash access.

Several algorithms are available for prefetch control that trade off performance versus
power. They are defined by the Bx_Py_PFLM (prefetch limit) register field. More aggressive
prefetching increases power slightly due to the number of wasted (discarded) prefetches,
but may increase performance by lowering average read latency.

In order for prefetching to occur, a number of control bits must be enabled. Specifically, the
global buffer enable (Bx_Py_BFE) must be set, the prefetch limit (Bx_Py_PFLM) must be
non-zero and either instruction prefetching (Bx_Py_IPFE) or data prefetching
(Bx_Py_DPFE) enabled. Refer to Section 17.3.6, “Registers description for a description of
these control fields.

Instruction/data prefetch triggering

Prefetch triggering may be enabled for instruction reads via the Bx_Py_IPFE control field,
while prefetching for data reads is enabled via the Bx_Py_DPFE control field. Additionally,
the Bx_Py_PFLIM field must also be set to enable prefetching. Prefetches are never
triggered by write cycles.

Per-master prefetch triggering

Prefetch triggering may be also controlled for individual bus masters. AHB accesses
indicate the requesting master via the hmaster[3:0] inputs. Refer to Section , “Platform Flash
Access Protection Register (PFAPR) for details on these controls.

Doc ID 16912 Rev 5 319/936

Flash Memory RMO0046

17.2.15

320/936

Buffer allocation

Allocation of the line read buffers is controlled via page buffer configuration (Bx_Py_BCFG)
field. This field defines the operating organization of the four page buffers. The buffers can
be organized as a “pool” of available resources (with all four buffers in the pool) or with a
fixed partition between buffers allocated to instruction or data accesses. For the fixed
partition, two configurations are supported. In one configuration, buffers 0 and 1 are
allocated for instruction fetches and buffers 2 and 3 for data accesses. In the second
configuration, buffers 0, 1, and 2 are allocated for instruction fetches and buffer 3 reserved
for data accesses.

Buffer invalidation
The page read buffers may be invalidated under hardware or software control.

Any falling edge transition of the array’s bkn_fl_done signal causes the page read buffers to
be marked as invalid. This input is negated by the Flash array at the beginning of all
program/erase operations as well as in certain other cases. Buffer invalidation occurs at the
next AHB non-sequential access boundary, but does not affect a burst from a page read
buffer in progress.

Software may invalidate the buffers by clearing the Bx_Py_BFE bit, which also disables the
buffers. Software may then re-assert the Bx_Py_BFE bit to its previous state, and the buffers
will have been invalidated.

One special case needing software invalidation relates to page buffer “hits” on Flash data
that was tagged with a single-bit ECC event on the original array access. Recall that the
page buffer structure includes an status bit signaling the array access detected and
corrected a single-bit ECC error. On all subsequent buffer hits to this type of page data, a
single-bit ECC event is signaled by the platform Flash controller. Depending on the specific
hardware configuration, this reporting of a single-bit ECC event may generate an ECC alert
interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need to be
invalidated by software after the first notification of the single-bit ECC event.

Finally, the buffers are invalidated by hardware on any non-sequential access with a non-
zero value on haddr[28:24] to support wait state emulation.

Bank1 temporary holding register

Recall the bank1 logic within the Flash includes a single 128-bit data register, used for
capturing read data. Since this bank does not support prefetching, the read data for the
referenced address is bypassed directly back to the AHB data bus. The page is also loaded
into the temporary data register and subsequent accesses to this page can hit from this
register, if it is enabled (B1_Py_BFE).

The organization of the temporary holding register is described as follows, in a pseudo-code
representation. The hardware structure includes the buffer address and valid bit, along with
128 bits of page read data and several error flags and is the same as an individual bankO
page buffer.

struct { // bkl page buffer
reg addr([23:4];// page address
reg valid; // valid bit

reg rdatal[l27:0];// page read data
reg xfr error; // transfer error indicator from Flash array
reg multi ecc _error;// multi-bit ECC error indicator from Flash array

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

17.2.16

reg single ecc_error;// single-bit correctable ECC indicator from
Flash array
} bkl page buffer;

For the general case, a temporary holding register is written at the completion of an error-
free Flash access and the valid bit asserted. Subsequent Flash accesses that “hit” the
buffer, that is, the current access address matches the address stored in the temporary
holding register, can be serviced in 0 AHB wait states as the stored read data is routed from
the temporary register back to the requesting bus master.

The contents of the holding register are invalidated by the falling edge transition of
bk1_fl_done and on any non-sequential access with a non-zero value on haddr[28:24] (to
support wait state emulation) in the same manner as the bank0 page buffers. Additionally,
the B1_Py_BFE register bit can be cleared by software to invalidate the contents of the
holding register.

As noted in Section 17.2.13, “Flash error response operation the temporary holding register
is not marked as valid if the Flash array access terminated with any type of transfer error.
However, the result is that Flash array accesses that are tagged with a single-bit correctable
ECC event are loaded into the temporary holding register and validated. Accordingly, one
special case needing software invalidation relates to holding register “hits” on Flash data
that was tagged with a single-bit ECC event. Depending on the specific hardware
configuration, the reporting of a single-bit ECC event may generate an ECC alert interrupt.
In order to prevent repeated ECC alert interrupts, the page buffers need to be invalidated by
software after the first notification of the single-bit ECC event.

The bank1 temporary holding register effectively operates like a single page buffer.

Read-While-Write functionality

The platform Flash controller supports various programmable responses for read accesses
while the Flash is busy performing a write (program) or erase operation. For all situations,
the platform Flash controller uses the state of the Flash array’s bkn_fl_done output to
determine if it is busy performing some type of high-voltage operation, namely, if
bkn_fl_done = 0, the array is busy.

Specifically, there are two 3-bit read-while-write (BKn_RWWC) control register fields that
define the platform Flash controller’s response to these types of access sequences. There
are five unique responses that are defined by the BKn_RWW(C setting: one immediately
reports an error on an attempted read, and four settings that support various stall-while-
write capabilities. Consider the details of these settings.

e BKn_RWWC = 0b0Oxx

— For this mode, any attempted Flash read to a busy array is immediately terminated
with an AHB error response and the read is blocked in the controller and not seen
by the Flash array.

e BKn_RWWC =0b111

— This defines the basic stall-while-write capability and represents the default reset
setting. For this mode, the platform Flash controller module stalls any read
reference until the Flash has completed its program/erase operation. If a read
access arrives while the array is busy or if a falling-edge on bkn_fl_done occurs
while a read is still in progress, the AHB data phase is stalled by negating
hready_out and saving the address and attributes into holding registers. Once the
array has completed its program/erase operation, the platform Flash controller
uses the saved address and attribute information to create a pseudo address

Doc ID 16912 Rev 5 321/936

Flash Memory

RMO0046

phase cycle to “retry” the read reference and sends the registered information to
the array as bkn_fl_rd_en is asserted. Once the retried address phase is
complete, the read is processed normally and once the data is valid, it is
forwarded to the AHB bus and hready_out negated to terminate the system bus
transfer.

BKn_RWWC = 0b110

This setting is similar to the basic stall-while-write capability provided when
BKn_RWWC = 0b111 with the added ability to generate a notification interrupt if a
read arrives while the array is busy with a program/erase operation. There are two
notification interrupts, one for each bank.

BKn_RWWC = 0b101

Again, this setting provides the basic stall-while-write capability with the added
ability to terminate any program/erase operation if a read access is initiated. For
this setting, the read request is captured and retried as described for the basic
stall-while-write, plus the program/erase operation is terminated by the platform
Flash controller's assertion of the bkc_fl_abort signal. The bkn_fl_abort signal
remains asserted until bkn_fl_done is driven high. For this setting, there are no
notification interrupts generated.

BKn_RWWC = 0b100

This setting provides the basic stall-while-write capability with the ability to
terminate any program/erase operation if a read access is initiated plus the
generation of a termination notification interrupt. For this setting, the read request
is captured and retried as described for the basic stall-while-write, the
program/erase operation is terminated by the platform Flash controller's assertion
of the bkn_fl_abort signal and a termination notification interrupt generated. There
are two termination notification interrupts, one for each bank.

As detailed above, there are a total of four interrupt requests associated with the stall-while-
write functionality. These interrupt requests are captured as part of ECSM’s Interrupt
Register and logically summed together to form a single request to the interrupt controller.

Table 139. Platform Flash controller stall-while-write interrupts

MIR[n] Interrupt description
ECSM.MIR[7] Platform Flash bank0 termination notification, MIR[FBOAI]
ECSM.MIR[6] Platform Flash bankO0 stall notification, MIR[FB0SI]
ECSM.MIR[5] Platform Flash bank1 termination notification, MIR[FB1Al]
ECSM.MIR[4] Platform Flash bank1 stall notification, MIR[FB1S1]

For example timing diagrams of the stall-while-write and terminate-while-write operations,
see Figure 149 and Figure 150 respectively.

17.2.17 Wait state emulation

Emulation of other memory array timings are supported by the platform Flash controller on
read cycles to the Flash. This functionality may be useful to maintain the access timing for
blocks of memory that were used to overlay Flash blocks for the purpose of system
calibration or tuning during code development.

322/936

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

Table 140.

The platform Flash controller inserts additional wait states according to the values of
haddr[28:24],where haddr represents the Flash address. When these inputs are non-zero,
additional cycles are added to AHB read cycles. Write cycles are not affected. In addition,
no page read buffer prefetches are initiated, and buffer hits are ignored.

Table 140 and Table 141 show the relationship of haddr[28:24] to the number of additional
primary wait states. These wait states are applied to the initial access of a burst fetch or to
single-beat read accesses on the AHB system bus.

Note that the wait state specification consists of two components: haddr[28:26] and
haddr[25:24] and effectively extends the Flash read by (8 x haddr[25:24] + haddr[28:26])
cycles.

Additional wait state encoding

Memory address

haddr[28:26] Additional wait states

000 0

—_

001

010

011

100

101

110

N|lo|oa|h~|[W|DN

111

17.2.18

Table 141 shows the relationship of haddr[25:24] to the number of additional wait states.
These are applied in addition to those specified by haddr[28:26] and thus extend the total
wait state specification capability.

Table 141. Extended additional wait state encoding

Additional wait states
M?";‘g";\lf[ggflz'ﬂss (added to those specified by
. haddr[28:26])

00 0
01 8
10 16
11 24

Timing diagrams

Since the platform Flash controller is typically used in platform configurations with a
cacheless core, the operation of the processor accesses to the platform memories, for
example Flash and SRAM, plays a major role in the overall system performance. Given the
core/platform pipeline structure, the platform’s memory controllers (PFlash, PRAM) are
designed to provide a 0 wait state data phase response to maximize processor

Doc ID 16912 Rev 5 323/936

Flash Memory RMO0046

performance. The following diagrams illustrate operation of various cycle types and
responses referenced earlier in this chapter including stall-while-read (Figure 149) and
terminate-while-read (Figure 150) diagrams.

Read, no buffering, no prefetch, APC = 0, RWSC = 0, PFLM =0

1 2 3 4 5 6 7 8

v S A et A e S A N
htrans EENonseq seq seq -

nacir, hprot Y s6ory e yra) aaoryes) a1z (N

hwrite A

hroata I NMMM c) @ cy++) @K cy+e) @cy-2)

hwaata

hready_out | | | | I |

hresp . okay I okay I okay I okay I okay I okay I okay I okay l]

bkn_fi_addr NN Y @ v+ @y @ -2

bkn_fl_rd_en i1 |_| il ‘

addry addr y+4 ! addr y+8 addr+12

bkn_fl_wr_en! !

bkn_fi_rdata | ENNGEEEED co) @ co- @ co-o @cy-)

Figure 145. 1-cycle access, no buffering, no prefetch

4

324/936 Doc ID 16912 Rev 5

RMO0046 Flash Memory

Burst Read, buffer miss, no prefetch, APC=2, RWSC=2, PFLM=0

1 2 3 4 5 6 7 8
hew | L L L L0 L1 L]

htrans -<”°”39q>-< seq seq seq
haddr,hprot -<addry>-< addr y+4 addr y+8 addry+12 |
hwite : : : : : y |

-
|

hrdata
e ___________________________________
hready_out l I I I I I I—I—L
hresp . okay I okay I okay I okay I okay I okay I okay I okay l]

bkn._fl_addr (y) ‘

1

adqry+4

I

adpry+8

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata =
bkn_fi xir err AR A A

Figure 146. 3-cycle access, no prefetch, buffering disabled

KYI Doc ID 16912 Rev 5 325/936

Flash Memory RMO0046

Burst Read, buffer miss, no prefetch, APC = 2, RWSC =2, PFLM =0

1 2 3 4 5 6 7 8
helk | \ | \ | \ | \ | \ | \ | \ | \ [
htrans -<n0nseq>-< seq seq seq _
haddr,hprot -< addr;/>-< addry+4‘ addr y+8 addr y+12 ‘ >—
wiie R | | | | _ —

ot D ¢ @ cy-o @ cy-e @ cy-12
ol |
heady ot I\ A V 4 v v v v v
resp I ok okay oy W oy A oy W ok W ok W okay W
bkn._fl_addr

bkn_fl_wr_en i1 1 1 1 1 1 1 1

' addry

bkn_fl_wr_en !

bkn_fl_rdata

I W W

Figure 147. 3-cycle access, no prefetch, buffering enabled

4

326/936 Doc ID 16912 Rev 5

RMO0046 Flash Memory

Burst Read, buffer miss, prefetch, APC =2, RWSC =2, PFLM =2

1 2 3 4 5 6 7 8
=4 A s A S A e o N S S

—
htrans -<"°”59q>.< seq seq seq seq seq X |
haddr, hprot -<addry>.< addr y+4 addr y+8 addr y+12 addr y+16 addr y+20><]
rwite TR 1 1 1 1 1 y |
hrdata | NN c) @ co- @ cuwe) @K Cu+12) @oue
waata T
hready_out . II :I :I II II II]I]r
hresp . okay I okay I okay I okay I okay I okay I okay I okay l]

okn_fi_acar D v (D y+16

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err .

Figure 148. 3-cycle access, prefetch and buffering enabled

KYI Doc ID 16912 Rev 5 327/936

Flash Memory RMO0046

Burst Read, Stall-and-Retry, APC =2, RWSC =2, PFLM =2
1 2 3 4 5 6 7 8 9 10

hek [L L[L ¥ 1 L. oL L

htrans l“""sequ ﬂ seq X__seq [
haddr, hprot ‘addrv>-< {s addry+4 (addry+5
hwrite B - {S _

hrdata —
hwdata __

hready_out . 1 | | lﬂ l l ‘l ‘l ‘l | '
hresp I_Ll_Ll_Llj}_Ll okay I okay I okay I okay | okay | okay |

bkn_fl_addr -@‘ y+ie | y V16 -
bkn_fi_rd_en | i1 | | | 1 ‘ | I |
! addry ! ! ‘ ! addty (retry) ! : addr y+16 :
bkn_fl_wr_en | Ss

bkn_fl_rdata —_@_
bkn_fl_xfr_err 4-‘-“-“1

bkn_done | | |

bkn_abort .

ecsm_mir[fbnsi] |

ecsm_mir[fonai] .

Figure 149. 3-cycle access, stall-and-retry with BKn_RWWC = 11x

As shown in Figure 149, the 3-cycle access to address y is interrupted when an operation
causes the bkn_done signal to be negated, signaling that the array bank is busy with a high-
voltage program or erase event. Eventually, this array operation completes (at the end of
cycle 4) and bkn_done returns to a logical 1. In cycle 6, the platform Flash controller module
retries the read to address y that was interrupted by the negation of bkn_done in cycle 3.
Note that throughout cycles 2—-9, the AHB bus pipeline is stalled with a read to address y in
the AHB data phase and a read to address y + 4 in the address phase. Depending on the
state of the least-significant-bit of the BKn_RWWC control field, the hardware may also
signal a stall notification interrupt (if BKn_RWWC = 110). The stall notification interrupt is
shown as the optional assertion of ECSM’s MIR[FBnSI] (Flash bank n stall interrupt).

328/936 Doc ID 16912 Rev 5 KYI

RMO0046 Flash Memory

Burst Read, Abort-and-Retry, APC = 2, RWSC =2, PFLM =2

1 2 3 4 5 6 7 8 9 10
ve % I I N Y T s Y Y Y I Y
htrans ‘“O“SQU SS seq seq]
haddr, hprot ‘addfu ﬂ at;dr y+4 addr y+8 ‘><]
hwrite - f{

hwdata _ : : : : :
N B B O B B e e

hresp | B o I okay ‘I okay I330_kay_l okay ‘I okay ‘I okay ‘I okay :I okay :I okay
bkn_fl_addr -@I _y+16 AR ORT) | N

)
bkn flrd_en Il |) | i | | I |
ff

‘ addry ! ! addry (retry) addry+16
bkn_fl_wr_en . ‘ ‘

ok 1 et I N)
ARV Vi W VvV VvV W VvV V V

o cone o | | | | | |
| A | f f f f f

| i f f f f f f

((| | : : : :

bkn_abort

ecsm_mir[fbnsi] |

ecsm_mirffbnai] .

Figure 150. 3-cycle access, terminate-and-retry with BKn_RWWC = 10x

Figure 150 shows the terminate-while-write timing diagram. In this example, the 3-cycle
access to address y is interrupted when an operation causes the bkn_done signal to be
negated, signaling that the array bank is busy with a high-voltage program or erase event.
Based on the setting of BKn_RWWC, once the bkn_done signal is detected as negated, the
platform Flash controller asserts bkn_abort, which forces the Flash array to cancel the high-
voltage program or erase event. The array operation completes (at the end of cycle 4) and
bkn_done returns to a logical 1. It should be noted that the time spent in cycle 4 for

Figure 150 is considerably less than the time in the same cycle in Figure 149 (because of
the terminate operation). In cycle 6, the platform Flash controller module retries the read to
address y that was interrupted by the negation of bkn_done in cycle 3. Note that throughout
cycles 2-9, the AHB bus pipeline is stalled with a read to address y in the AHB data phase
and a read to address y+4 in the address phase. Depending on the state of the least-
significant-bit of the BKn_RWWC control field, the hardware may also signal an termination
notification interrupt (if BKn_RWWC = 100). The stall notification interrupt is shown as the
optional assertion of ECSM’s MIR[FBnAI] (Flash bank n termination interrupt).

KYI Doc ID 16912 Rev 5 329/936

Flash Memory RMO0046

17.3

17.3.1

17.3.2

17.3.3

330/936

Flash memory

Introduction

The Flash module provides electrically programmable and erasable non-volatile memory
(NVM), which may be used for instruction and/or data storage.

The Flash module is arranged as two functional units: the Flash core and the memory
interface.

The Flash core is composed of arrayed non-volatile storage elements, sense amplifiers, row
decoders, column decoders and charge pumps. The arrayed storage elements in the Flash
core are sub-divided into physically separate units referred to as blocks (or sectors).

The memory interface contains the registers and logic which control the operation of the
Flash core. The memory interface is also the interface between the Flash module and a bus
interface unit (BIU), and may contain the ECC logic and redundancy logic. The BIU
connects the Flash module to a system bus.

The SPC560P40/34 provides two Flash modules: one 256 KB code Flash module, and one
64 KB data module.

Main features

® High read parallelism (128 bits)

Error Correction Code (SEC-DED) to enhance data retention

Double word program (64 bits)

Sector erase

Single bank architecture

— Read-While-Modify not available within an individual module

— Read-While-Modify can be performed between the two Flash modules
Erase suspend available (program suspend not available)

Software programmable program/erase protection to avoid unwanted writes
Censored mode against piracy

Shadow Sector available on code Flash module

Block diagram

Data Flash

The data Flash module contains one module, composed of a Single Bank: Bank 0, normally
used for code storage. No Read-While-Modify operations are possible.

The Modify operations are managed by an embedded Flash Program/Erase Controller
(FPEC). Commands to the FPEC are given through a user registers interface.

The read data bus is 32 bits wide, while the data Flash registers are on a separate 32-bit
wide bus.

The high voltages needed for Program/Erase operations are internally generated.
Figure 151 shows the data Flash module structure.

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

HV generator
Flash
Program/Erase |e—»
Flash Bank 1
Controller
64 KB
+ 8 KB TestFlash
Data Flash
Registers
A A
\J Y
Registers Matrix
Interface Interface

Figure 151. Data Flash module structure

Code Flash

The code Flash module contains the matrix modules normally used for Code storage. No

Read-While-Modify operations are possible

The Modify operations are managed by an embedded Flash Program/Erase Controller
(FPEC). Commands to the FPEC are given through a User Registers Interface.

The read data bus is 128 bits wide, while the Flash registers are on a separate 32-bit wide

bus.

The high voltages needed for Program/Erase operations are internally generated.
Figure 152 shows the code Flash module structure.

Doc ID 16912

Rev 5

331/936

Flash Memory RMO0046

HV generator
Flash
<> Program/Er
Flash Bank 0 ogram/Erase
Controller
256 KB
+ 16 KB TestFlash
+ 16 KB Shadow Code Flash
Registers
A y
L Y
Matrix Registers
Interface Interface

17.3.4

332/936

Figure 152. Code Flash module structure

Functional description

Macrocell structure

The Flash macrocell provides high density non-volatile memories with high-speed read
access.

The Flash module is addressable by word (32 bits) or double-word (64 bits) for
programming, and by page (128 bits) for reads. Reads done to the Flash always return 128
bits, although read page buffering may be done in the platform BIU.

Each read of the Flash module retrieves a page, or 4 consecutive words (128 bits) of
information. The address for each word retrieved within a page differ from the other
addresses in the page only by address bits (3:2).

The Flash page read architecture supports both cache and burst mode at the BIU level for
high-speed read application.

The Flash module supports fault tolerance through Error Correction Code (ECC) and/or
error detection. The ECC implemented within the Flash module will correct single bit failures
and detect double bit failures.

The Flash module uses an embedded hardware algorithm implemented in the memory
interface to program and erase the Flash core.

Control logic that works with the software block enables, and software lock mechanisms, is
included in the embedded hardware algorithm to guard against accidental program/erase.

The hardware algorithm perform the steps necessary to ensure that the storage elements
are programmed and erased with sufficient margin to guarantee data integrity and reliability.

A programmed bit in the Flash module reads as logic level 0 (or low).

Doc ID 16912 Rev 5 KYI

RMO0046 Flash Memory
An erased bit in the Flash module reads as logic level 1 (or high).
Program and erase of the Flash module requires multiple system clock cycles to complete.
The erase sequence may be suspended.
The program and erase sequences may be terminated.
Flash module sectorization
The code Flash module supports 256 KB of user memory, plus 16 KB of test memory (a
portion of which is one-time programmable by the user). An extra 16 KB sector is available
as Shadow space usable for user option bits or censorship.
The code Flash and data modules are each composed of a single bank: Bank 0 (code
Flash) and Bank 1 (data Flash). Read-While-Modify within a module is not supported, but
can be performed by reading from one module while writing to another.
The code Flash Bank 0 is divided in 8 sectors including a reserved sector named TestFlash,
in which One Time Programmable (OTP) user data are stored, and a Shadow Sector in
which user erasable configuration values can be stored (see Table 142).
The data Flash Bank 1 is divided in five sectors including a reserved sector named
TestFlash (see Table 143).
Table 142. 288 KB code Flash module sectorization
Bank Sector Addresses Size Address space
BO BOFO 0x0000_0000-0x0000_7FFF 32 KB Low Address Space
BO BOF1 0x0000_8000-0x0000_BFFF 16 KB Low Address Space
BO BOF2 0x0000_C000-0x0000_FFFF 16 KB Low Address Space
BO BOF3 0x0001_0000-0x0001_7FFF 32 KB Low Address Space
BO BOF4 0x0001_8000-0x0001_FFFF 32 KB Low Address Space
BO BOF5 0x0002_0000-0x0003_FFFF 128 KB Low Address Space
BO Reserved 0x0004_0000-0x0007_FFFF 256 KB Mid Address Space
BO Reserved 0x0008_0000-0x001F_FFFF 1536 KB High Address Space
BO BOSH 0x0020_0000—0x0020_3FFF 16 KB Shadow Address Space
BO Reserved 0x0020_4000-0x003F_FFFF 2032 KB Shadow Address Space
BO BOTF 0x0040_0000-0x0040_3FFF 16 KB Test Address Space
BO Reserved 0x0040_4000-0x007F_FFFF 4080 KB Test Address Space
Table 143. 64 KB data Flash module sectorization
Bank Sector Addresses Size (KB) Address space
B1 B1FO 0x0080_0000 to 0x0080_3FFF 16 Low Address Space
B1 B1F1 0x0080_4000 to 0x0080_7FFF 16 Low Address Space
B1 B1F2 0x0080_8000 to 0x0080_BFFF 16 Low Address Space
B1 B1F3 0x0080_C000 to 0x0080_FFFF 16 Low Address Space
ﬂ Doc ID 16912 Rev 5 333/936

Flash Memory

RMO0046

Table 143. 64 KB data Flash module sectorization (continued)

Bank Sector Addresses Size (KB) Address space
B1 Reserved 0x0081_0000 to 0x00CO_1FFF 4040 Reserved
B1 B1TF 0x00C0_2000 to 0x00CO_3FFF 8 Test Address Space
B1 Reserved 0x00C0_4000 to 0XO0FF_FFFF 4080 Reserved

Each Flash module is divided into blocks to implement independent program/erase
protection. A software mechanism is provided to independently lock/unlock each block in
address space against program and erase.

TestFlash block

The TestFlash block exists outside the normal address space and is programmed and read
independently of the other blocks. The independent TestFlash block is included also to
support systems that require non-volatile memory for security and/or to store system

initialization information.

A section of the TestFlash is reserved to store the non-volatile information related to
redundancy, configuration, and protection.

ECC is also applied to TestFlash. The usage of reserved TestFlash sectors is detailed in

Table 144.

Table 144. TestFlash structure

o Addresses Size
Name Description (bytes)
Code TestFlash Data TestFlash ytes
— Reserved 0x0040_0000—0x0040_1FFF — 8192
— Reserved 0x0040_2000-0x0040_3CFF | 0x00C0_2000—- 0x00CO_3CFF | 7424
— User Reserved 0x0040_3D00-0x0040_3DE7 | 0x00C0_3D00-0x00C0_3DE7 | 232
Ny | Non-volatile Low/Mid address | 14 3pEg 0x0040 3DEF | 0x00CO_3DES-0x00CO_3DEF| 8
space block Locking register
— User Reserved 0x0040_3DF0—-0x0040_3DF7 | 0x00C0_3DF0-0x00C0_3DF7 8
Non-volatile Secondary
NVSLL | Low/mid add space block Lock | 0x0040_3DF8-0x0040_3DFF | 0x00C0_3DF8-0x00C0_3DFF 8
register
— User Reserved 0x0040_3E00-0x0040_3EFF | 0x00C0_3E00-0x00CO0_3EFF | 256
— Reserved 0x0040_3F00-0x0040_3FFF | 0x00C0_3F00-0x00CO_3FFF | 256

334/936

Erase of the TestFlash block is always locked.

TestFlash block programming restrictions, in terms of how ECC is calculated, are similar to
array programming restrictions. Only one program is allowed per 64-bit ECC segment.

Locations of the Code TestFlash block marked as reserved cannot be programmed by the
user application. Locations of the Data TestFlash block marked as reserved cannot be
programmed by the user application.

Doc ID 16912 Rev 5

574

RMO0046 Flash Memory

Shadow block

A Shadow block is present in each Code flash module, but not in the Data flash module. The
Shadow block can be enabled by the BIU.

When the Shadow space is enabled, all the operations are mapped to the Shadow block.

User mode program and erase of the shadow block are enabled only when MCR[PEAS] is
set.

The Shadow block may be locked/unlocked against program or erase by using the
LML[TSLK] and SLL[STSLK] bitfields.

Program of the Shadow block has similar restriction as the array in terms of how ECC is
calculated. Only one program is allowed per 64-bit ECC segment between erases.

Erase of the Shadow block is done similarly as an sectors erase.
The Shadow block contains specified data that are needed for user features.

The user area of Shadow block may be used for user-defined functions (possibly to store
boot code, other configuration words, or factory process codes).

The usage of the Shadow sector is detailed in Table 145.

KYI Doc ID 16912 Rev 5 335/936

Flash Memory RMO0046

Table 145. Shadow sector structure
Name Description Addresses (:’/i tze es)
— User Area 0x0020_0000—-0x0020_3DCF | 15824
— Reserved 0x0020_3DD0-0x0020_3DD7 8
NVPWDO-1 Non-volatile private censorship password 0—1 registers | 0x0020_3DD8-0x0020_3DDF 8
NVSCI0-1 Non-volatile system censorship information 0—1 registers | 0x0020_3DE0-0x0020_3DE7 8
— Reserved 0x0020_3DE8-0x0020_3DFF 24
NVBIU2-3 Non-volatile bus interface unit 2—-3 registers 0x0020_3E00-0x0020_3EOF 16
— Reserved 0x0020_3E10-0x0020_3E17 8
NVUSRO Non-volatile user options register 0x0020_3E18-0x0020_3E1F 8
— Reserved 0x0020_3E20-0x0020_3FFF | 480
17.3.5 Operating modes

336/936

The following operating modes are available in the Flash module:
® Reset

® User mode

® Low-power mode

® Power-down mode

Reset

A reset is the highest priority operation for the Flash module and terminates all other
operations.

The Flash module uses reset to initialize registers and status bits to their default reset
values.

If the Flash module is executing a program or erase operation (MCR[PGM] = 1 or
MCRI[ERS] = 1) and a reset is issued, the operation is suddenly terminated and the module
disables the high voltage logic without damage to the high voltage circuits. Reset terminates
all operations and forces the Flash module into User mode ready to receive accesses.

Reset and power-down must not be used as a systematic way to terminate a program or
erase operation.

After reset is deasserted, read register access may be done, although it should be noted
that registers that require updating from shadow information or other inputs may not read
updated values until MCR[DONE] transitions. MCR[DONE] may be polled to determine if the
Flash module has transitioned out of reset. Notice that the registers cannot be written until
MCR[DONE] is high.

User mode

In User mode, the Flash module may be read, written (register writes and interlock writes),
programmed, or erased.

The default state of the Flash module is the read state.

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

The main, shadow, and test address space can be read only in the read state.

The Flash registers are always available for reads. When the module is in power-down
mode, most (but not all) registers are available for reads. The exceptions are documented.

The Flash module enters the read state on reset.

The module is in the read state under two sets of conditions:
® The read state is active when the module is enabled (User mode read).

® The read state is active when MCR[ERS] and MCR[ESUS] are set and MCR[PGM] is
cleared (Erase Suspend).

No Read-While-Modify is available within an individual module, although one module can be
read while the other is being written or otherwise modified.

Flash core reads return 128 bits (1 page = 2 double words).
Register reads return 32 bits (1 word).

Flash core reads are done through the BIU.

Register reads to unmapped register address space return all Os.
Register writes to unmapped register address space have no effect.

Array reads attempted to invalid locations will result in indeterminate data. Invalid locations
occur when addressing is done to blocks that do not exist in non 2" array sizes.

Interlock writes attempted to invalid locations, will result in an interlock occurring, but
attempts to program these blocks will not occur since they are forced to be locked. Erase will
occur to selected and unlocked blocks even if the interlock write is to an invalid location.

Simultaneous read cycles on the code Flash block and read/write cycles on the data Flash
block are possible. However, simultaneous read/write accesses within a single block are not
permitted.

Chip Select, Write Enable, addresses, and data input of registers are not internally latched
and must be kept stable by the CPU for all the read/write access that lasts two clock cycles.
Low-power mode

The Low-power mode turns off most of the DC current sources within the Flash module.

The module (Flash core and registers) is not accessible for read or write operations once it
has entered Low-power mode.

Wake-up time from Low-power mode is faster than wake-up time from Power-down mode.

The user may not read some registers (UMISR0-4, UT1-2 and part of UTO) until the Low-
power mode is exited. Write access is locked on all the registers in Low-power mode.

When exiting from Low-power mode, the Flash module returns to its previous state in all
cases, unless it was in the process of executing an erase high voltage operation at the time
of entering Low-power mode.

If the Flash module is put into Low-power mode during an erase operation, the MCR[ESUS]
bit is set to 1. The user may resume the erase operation when the Flash module exits from
Low-power mode by clearing MCR[ESUS]. MCR[EHV] must be set to resume the erase
operation.

If the Flash module is put in Low-power mode during a program operation, the operation is
completed in all cases. Low-power mode is entered only after the programming ends.

Doc ID 16912 Rev 5 337/936

Flash Memory RMO0046

338/936

Power-down mode cannot be entered when Low-power mode is active. The module must
first be set to User mode (or reset) when cycling between Low-power mode and Power-
down mode.

Power-down mode

The Power-down mode allows turning off all Flash DC current sources so that power
dissipation is limited only to leakage in this mode.

In Power-down mode, no reads from or writes to the Flash are possible.

When enabled, the Flash module returns to its previous state in all cases, unless in the
process of executing an erase high voltage operation at the time of entering Power-down
mode. If the Flash module is put into Power-down mode during an erase operation, the
MCRI[ESUS] bit is set to 1. The user may resume the erase operation when the Flash
module exits Power-down mode by clearing the MCR[ESUS] bit. MCR[EHV] must be set to
resume the erase operation.

If the Flash module is placed in Power-down mode during a program operation, the
operation will be completed in any case and the Power-down mode is entered only after the
programming is completed.

If the Flash module is put in Power-down mode and the vector table remains mapped in the
Flash address space, the user must observe than the Flash module will require a longer
interrupt response time. This should be accomplished by adding several wait states.

Low-power mode cannot be entered when Power-down mode is active. The module must
first be set to User mode (or reset) when cycling between Low-power mode and Power-
down mode.

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

17.3.6 Registers description
The Flash user registers mapping is shown in Table 146. Except as noted, registers and
offsets are identical for the code Flash and data Flash blocks.
Table 146. Flash registers
Offset from
xxxx_BASE Register Location
(OxFFFE_C000)
0x0000 on page 17-342
0x0004 Low/mid Address Space Block Locking Register (LML) on page 17-346
0x0008 Reserved
0x000C (Sseff)ndary Low/mid Address Space Block Lock Register on page 17-349
0x0010 Low/mid Address Space Block Select Register (LMS) on page 17-351
0x0014 Reserved
0x0018 Address Register (ADR) on page 17-352
0x001C Platform Flash Configuration Register 0 (PFCR0)(") on page 17-353
0x0020 Platform Flash Configuration Register 1 (PFCR1)(") on page 17-357
0x0024 Platform Flash Access Protection Register (PFAPR)(") on page 17-359
0x0028 Reserved
0x003C User Test Register 0 (UTO) on page 17-360
0x0040 User Test Register 1 (UT1) on page 17-362
0x0044 User Test Register 2 (UT2)() on page 17-363
0x0048 User Multiple Input Signature Register 0 (UMISRO0) on page 17-363
0x004C User Multiple Input Signature Register 1 (UMISR1) on page 17-364
0x0050 User Multiple Input Signature Register 2 (UMISRZ)“) on page 17-365
0x0054 User Multiple Input Signature Register 3 (UMISRS)“) on page 17-365
0x0058 User Multiple Input Signature Register 4 (UMISR4)(1) on page 17-366
0x005C—0x3FFF | Reserved
1. This register is not implemented on the data Flash block.
17.3.7 Register map

Table 147. Flash 256 KB bankO0 register map

Address | Register 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
offset name
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0x00 MCR EDC 0 0 0 0 SIZE2 | SIZE1 | SIZEO 0 LAS2 | LAS1 | LASO 0 0 0 MAS
EER RWE 0 0 PEAS | DONE | PEG 0 0 0 0 PGM | PSUS | ERS | ESUS | EHV
KYI Doc ID 16912 Rev 5 339/936

Flash Memory RMO0046

Table 147. Flash 256 KB bank0 register map (continued)

Address | Register 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
offset name

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x04 LML LME 0 0 0 0 0 0 0 0 0 0 TSLK 0 0 0 0

LLK15 | LLK14 | LLK13 | LLK12 | LLK11 | LLK10 | LLK9 | LLK8 | LLK7 | LLK6 | LLK5 | LLK4 | LLK3 | LLK2 | LLK1 | LLKO

0x08 Reserved

0x0C SLL SLE 0 0 0 0 0 0 0 0 0 0 |STSLK| 0 0 0 0

SLK15 | SLK14 | SLK13 | SLK12 | SLK11 | SLK10 | SLK9 | SLK8 | SLK7 | SLK6 | SLK5 | SLK4 | SLK3 | SLK2 | SLK1 | SLKO

0x10 LMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LSL15 | LSL14 | LSL13 | LSL12 | LSL11 | LSL10 | LSL9 | LSL8 | LSL7 | LSL6 | LSL5 | LSL4 | LSL3 | LSL2 | LSL1 | LSLO

0x14 Reserved
0x18 ADR 0 0 0 0 0 0 0 0 0 AD22 | AD21 | AD20 | AD19 | AD18 | AD17 | AD16
AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | AD7 | AD6 | AD5 | AD4 | AD3 0 0 0

0x1C | PFCRO | BI0O31 | BIO30 | BI029 | BI028 | BI027 | BI026 | BI025 | BI024 | BI023 | BI022 | BI021 | BI020 | BIO19 | BI018 | BIO17 | BIO16

BIO15 | BIO14 | BIO13 | BIO12 | BIO11 | BIO10 | BIOO9 | BIOO8 | BIOO7 | BIOO6 | BIOO5 | BIOO4 | BIOO3 | BIOO2 | BIOO1 | BIOOO

0x20 | PFCR1 | BI131 | BI130 | BI129 | BI128 | BI127 | BI126 | BI125 | BI124 | BI123 | BI122 | BI121 | BI120 | BI119 | BI118 | BI117 | BI116

BI115 | BI114 | BI113 | BI112 | BI111 | BI110 | BI109 | BI108 | BI107 | BI106 | BI105 | BI104 | BI103 | BI102 | BI101 | BI100

0x24 | PFAPR | BI231 | BI230 | BI229 | BI228 | BI227 | BI226 | BI225 | BI224 | BI223 | BI222 | BI221 | BI220 | BI219 | BI218 | BI217 | BI216

BI215 | BI214 | BI213 | BI212 | BI211 | BI210 | BI209 | BI208 | BI207 | BI206 | BI205 | BI204 | BI203 | BI202 | BI201 | BI200

0x28 Reserved

0x3C uTo UTE 0 0 0 0 0 0 0 DSI7 | DSI6 | DSI5 | DSI4 | DSI3 | DSI2 | DSI1 | DSI0

0 0 0 0 0 0 0 0 0 X MRE | MRV | EIE AIS AIE AID

0x40 UT1 | DAI31 | DAI30 | DAI29 | DAI28 | DAI27 | DAI26 | DAI25 | DAI24 | DAI23 | DAI22 | DAI21 | DAI20 | DAI19 | DAI18 | DAI17 | DAI16

DAI15 | DAI14 | DAI13 | DAI12 | DAI11 | DAI10 | DAIO9 | DAIO8 | DAIO7 | DAIO6 | DAIOS | DAIO4 | DAIO3 | DAIO2 | DAIO1 | DAIOO

0x44 UT2 | DAI63 | DAI62 | DAI61 | DAIGO | DAIS9 | DAIS8 | DAIS7 | DAIS6 | DAIS5 | DAI54 | DAIS3 | DAIS2 | DAIS1 | DAISO | DAI49 | DAI48

DAI47 | DAI46 | DAI45 | DAI44 | DAI43 | DAI42 | DAI41 | DAI40 | DAI39 | DAI38 | DAI37 | DAI36 | DAI35 | DAI34 | DAI33 | DAI32

0x48 | UMISRO | MS031 | MS030 | MS029 | MS028 | MS027 | MS026 | MS025 | MS024 | MS023 | MS022 | MS021 | MS020 | MS019 | MS018 | MS017 | MS016

MS015 | MS014 | MS013 | MS012 | MS011 | MS010 | MS009 | MS008 | MS007 | MS006 | MS005 | MS004 | MS003 | MS002 | MS001 | MS000

0x4C | UMISR1 | MS063 | MS062 | MS061 | MS060 | MS059 | MS058 | MS057 | MS056 | MS055 | MS054 | MS053 | MS052 | MS051 | MS050 | MS049 | MS048

MS047 | MS046 | MS045 | MS044 | MS043 | MS042 | MS041 | MS040 | MS039 | MS038 | MS037 | MS036 | MS035 | MS034 | MS033 | MS032

0x50 | UMISR2 | MS095 | MS094 | MS093 | MS092 | MS091 | MS090 | MS089 | MS088 | MS087 | MS086 | MS085 | MS084 | MS083 | MS082 | MS081 | MS080

MS079 | MS078 | MS077 | MS076 | MS075 | MS074 | MS073 | MS072 | MS071 | MS070 | MS069 | MS068 | MS067 | MS066 | MS065 | MS064

0x54 | UMISR3 | MS127 | MS126 | MS125 | MS124 | MS123 | MS122 | MS121 | MS120 | MS119 | MS118 | MS117 | MS116 | MS115 | MS114 | MS113 | MS112

MS111 | MS110 | MS109 | MS108 | MS107 | MS106 | MS105 | MS104 | MS103 | MS102 | MS101 | MS100 | MS099 | MS098 | MS097 | MS096

0x58 | UMISR4 | MS159 | MS158 | MS157 | MS156 | MS155 | MS154 | MS153 | MS152 | MS151 | MS150 | MS149 | MS148 | MS147 | MS146 | MS145 | MS144

MS143 | MS142 | MS141 | MS140 | MS139 | MS138 | MS137 | MS136 | MS135 | MS134 | MS133 | MS132 | MS131 | MS130 | MS129 | MS128

340/936 Doc ID 16912 Rev 5 IYI

RMO0046 Flash Memory

Table 148. Flash 64 KB bank1 register map

Address | Register 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
offset name

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x00 MCR | EDC 0 0 0 0 SIZE2 | SIZE1 | SIZEO 0 LAS2 | LAS1 | LASO 0 0 0 MAS

EER | RWE 0 0 PEAS | DONE | PEG 0 0 0 0 PGM | PSUS | ERS | ESUS | EHV

0x04 LML LME 0 0 0 0 0 0 0 0 0 0 TSLK 0 0 0 0

LLK15 | LLK14 | LLK13 | LLK12 | LLK11 | LLK10 | LLK9 | LLK8 | LLK7 | LLK6 | LLK5 | LLK4 | LLK3 | LLK2 | LLK1 | LLKO

0x08 Reserved

0x0C SLL SLE 0 0 0 0 0 0 0 0 0 0 STSLK | 0 0 0 0

SLK15 | SLK14 | SLK13 | SLK12 | SLK11 | SLK10 | SLK9 | SLK8 | SLK7 | SLK6 | SLK5 | SLK4 | SLK3 | SLK2 | SLK1 | SLKO

0x10 LMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LSL15 | LSL14 | LSL13 | LSL12 | LSL11 | LSL10 | LSL9 | LSL8 | LSL7 | LSL6 | LSL5 | LSL4 | LSL3 | LSL2 | LSL1 | LSLO

0x14 Reserved
0x18 ADR 0 0 0 0 0 0 0 0 0 AD22 | AD21 | AD20 | AD19 | AD18 | AD17 | AD16
AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | AD7 | AD6 | AD5 | AD4 | AD3 0 0 0
0x1C- Reserved
0x3B
0x3C uTo UTE 0 0 0 0 0 0 0 DSI7 | DSI6 | DSI5 | DSI4 | DSI3 | DSI2 | DSI1 | DSIO
0 0 0 0 0 0 0 0 0 X MRE | MRV | EIE AIS AlE AID

0x40 UT1 | DAI31 | DAI30 | DAI29 | DAI28 | DAI27 | DAI26 | DAI25 | DAI24 | DAI23 | DAI22 | DAI21 | DAI20 | DAI19 | DAI18 | DAI17 | DAI16

DAI15 | DAI14 | DAI13 | DAI12 | DAI11 | DAI10 | DAIO9 | DAIO8 | DAIO7 | DAIO6 | DAIOS | DAIO4 | DAIO3 | DAIO2 | DAIO1 | DAIOO

0x44— Reserved
0x47

0x48 | UMISRO | MS031 | MS030 | MS029 | MS028 | MS027 | MS026 | MS025 | MS024 | MS023 | MS022 | MS021 | MS020 | MS019 | MS018 | MS017 | MS016

MS015 | MS014 | MS013 | MS012 | MS011 | MS010 | MS009 | MS008 | MS007 | MS006 | MS005 | MS004 | MS003 | MS002 | MS001 | MS000

0x4C | UMISR1 | MS063 | MS062 | MS061 | MS060 | MS059 | MS058 | MS057 | MS056 | MS055 | MS054 | MS053 | MS052 | MS051 | MS050 | MS049 | MS048

MS047 | MS046 | MS045 | MS044 | MS043 | MS042 | MS041 | MS040 | MS039 | MS038 | MS037 | MS036 | MS035 | MS034 | MS033 | MS032

0x50— Reserved
0x5B

In the following sections, some non-volatile registers are described. Please notice that such
entities are not Flip-Flops, but locations of TestFlash or Shadow sectors with a special
meaning.

During the Flash initialization phase, the FPEC reads these non-volatile registers and

updates their related volatile registers. When the FPEC detects ECC double errors in these

special locations, it behaves in the following way:

® In case of a failing system locations (configurations, device options, redundancy,
EmbAlgo firmware), the initialization phase is interrupted and a Fatal Error is flagged.

® In case of failing user locations (protections, censorship, BIU, ...), the volatile registers
are filled with all 1s and the Flash initialization ends by clearing the MCR[PEG] bit.

KYI Doc ID 16912 Rev 5 341/936

Flash Memory

RMO0046

Module Configuration Register (MCR)

The Module Configuration Register enables and monitors all the modify operations of each
Flash module. Identical MCRs are provided in the code Flash and the data Flash blocks.

Figure 153. Module Configuration Register (MCR)

Address: Base + 0x0000

R
w
Reset

R
w
Reset

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EDC| 0 0 0 |[SIzE2|SIZE1|SIZEO| 0 |LAS2|LAS1|LASO| 0 0 0 |MAS
ric
0 0 0 0 o —M O M o —MO 4 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
EER |[RWE| 0 0 |PEAS|DONE|PEG| 0 0 0 0

PGM |PSUS| ERS |ESUS| EHV
ric | ric

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1. The value for this bit is different between the code and data Flash modules. See the bitfield description.

Table 149. MCR field descriptions
Field Description
ECC Data Correction
EDC provides information on previous reads. If a ECC Single Error detection and correction occurs,
the EDC bit is set to 1. This bit must then be cleared, or a reset must occur before this bit will return
to a O state. This bit may not be set to 1 by the user.
EDC In the event of a ECC Double Error detection, this bit is not set.
0 If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or clearing
of EDC) were not corrected through ECC.
Since this bit is an error flag, it must be cleared to 0 by writing 1 to the register location. A write of 0
will have no effect.
0 Reads are occurring normally.
1 An ECC Single Error occurred and was corrected during a previous read.
14 Reserved (Read Only)
' A write to these bits has no effect. A read of these bits always outputs 0.
Array space SIZE 2—-0
The value of SIZE field depends on the size of the Flash module:
000 128 KB
001 256 KB (the value for the SPC560P40/34 device in the code Flash module)
. 010 512KB
SIZE-[2.0] 011 Reserved (1024 KB)
57 100 Reserved (1536 KB)
101 Reserved (2048 KB)
110 64 KB (the value for the device in the data Flash module)
111 Reserved
The value for this bitfield is different between the code and data Flash modules.
8 Reserved (Read Only)
A write to these bits has no effect. A read of these bits always outputs 0.

342/936

Doc ID 16912 Rev 5

RMO0046

Flash Memory

Table 149. MCR field descriptions (continued)

Field Description
Low Address Space 2—-0
The value of the LAS field corresponds to the configuration of the Low Address Space:
000 Reserved
001 Reserved
010 32 KB+ (2 x 16 KB) + (2 x 32 KB) + 128 KB (the value for the SPC560P40/34device in the
LAS[2:0] code Flash module)
9:11 011 Reserved
100 Reserved
101 Reserved
110 4 x 16 KB (the value for the SPC560P40/34device in the data Flash module)
111 Reserved
The value for this bitfield is different between the code and data Flash modules.
12:14 Reserved (Read Only)
' A write to these bits has no effect. A read of these bits always outputs 0.
Mid Address Space
MAS The value of the MAS field corresponds to the configuration of the Mid Address Space:
15 0 OKBor2x 128 KB
1 Reserved
ECC Event Error
EER provides information on previous reads. When an ECC Double Error detection occurs, the EER
bit is setto 1.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. This bit
may not be set to 1 by the user.
EER In the event of a ECC Single Error detection and correction, this bit will not be set.
16 If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or clearing
of EER) were correct.
Since this bit is an error flag, it must be cleared to 0 by writing 1 to the register location. A write of 0
will have no effect.
0 Reads are occurring normally.
1 An ECC Double Error occurred during a previous read.
Read-while-Write event Error
RWE provides information on previous reads when a Modify operation is on going. If a RWW Error
occurs, the RWE bit is set to 1. Read-While-Write Error means that a read access to the Flash
module has occurred while the FPEC was performing a program or Erase operation or an Array
Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. This bit
may not be set to 1 by the user.
RWE If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last reset, or
17 clearing of RWE) were correct.
Since this bit is an error flag, it must be cleared to 0 by writing 1 to the register location. A write of 0
will have no effect.
0 Reads are occurring normally.
1 A RWW Error occurred during a previous read.
If stall/terminate-while-write is used, the software should ignore the setting of the RWE flag and should clear
this flag after each erase operation. If stall/terminate-while-write is not used, software can handle the
RWE error normally.
18:19 Reserved (Read Only)
' A write to these bits has no effect. A read of these bits always outputs 0.

Doc ID 16912 Rev 5 343/936

Flash Memory RMO0046

Table 149. MCR field descriptions (continued)
Field Description
Program/Erase Access Space
PEAS indicates which space is valid for program and Erase operations: main array space or
shadow/test space.
PEAS = 0 indicates that the main address space is active for all Flash module program and erase
PEAS operations.
20 PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify operations. The
value of PEAS is retained between sampling events (that is, subsequent first interlock writes).
0 Shadow/Test address space is disabled for program/erase and main address space enabled.
1 Shadow/Test address space is enabled for program/erase and main address space disabled.
Modify Operation Done
DONE indicates if the Flash module is performing a high voltage operation.
DONE is set to 1 on termination of the Flash module reset.
DONE is cleared to 0 just after a 0-to-1 transition of EHV, which initiates a high voltage operation, or
after resuming a suspended operation.
DONE DONE is set to 1 at the end of program and erase high voltage sequences.
21 DONE is set to 1 (within tpagT OF teagT, €qual to P/E Abort Latency) after a 1-to-0 transition of EHV,
which terminates a high voltage program/erase operation.
DONE is set to 1 (within tggyg, time equal to Erase Suspend Latency) after a 0-to-1 transition of
ESUS, which suspends an erase operation.
0 Flash is executing a high voltage operation.
1 Flash is not executing a high voltage operation.
Program/Erase Good
The PEG bit indicates the completion status of the last Flash program or erase sequence for which
high voltage operations were initiated. The value of PEG is updated automatically during the
program and erase high voltage operations.
Aborting a program/erase high voltage operation causes PEG to be cleared to 0, indicating the
sequence failed.
PEG is set to 1 when the Flash module is reset, unless a Flash initialization error has been
detected.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions from 0 to
1 due to a termination or the completion of a program/erase operation. PEG is valid until PGM/ERS
makes a 1-to-0 transition or EHV makes a 0-to-1 transition.
The value in PEG is not valid after a 0-to-1 transition of DONE caused by ESUS being set to logic 1.
If program or erase are attempted on blocks that are locked, the response is PEG = 1, indicating that
PEG .
the operation was successful, and the content of the block were properly protected from the
22 program or erase operation.
If a program operation tries to program at 1 bits that are at 0, the program operation is correctly
executed on the new bits to be programmed at 0, but PEG is cleared, indicating that the requested
operation has failed.
In Array Integrity Check or Margin Mode, PEG is set to 1 when the operation is completed,
regardless
the occurrence of any error. The presence of errors can be detected only comparing checksum
value
stored in UMIRS[0:1].
0 Program or erase operation failed; or program, erase, Array Integrity Check, or Margin Mode was
terminated.
1 Program or erase operation successful; or Array Integrity Check or Margin Mode completed
successfully.

344/936

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

Table 149.

MCR field descriptions (continued)

Field

Description

23:26

Reserved (Read Only)
A write to these bits has no effect. A read of these bits always outputs 0.

PGM
27

Program

PGM sets up the Flash module for a program operation.
A 0-to-1 transition of PGM initiates a program sequence.
A 1-to-0 transition of PGM ends the program sequence.

PGM can be set only under User mode Read (ERS is low and UTO[AIE] is low). PGM can be
cleared by the user only when EHV is low and DONE is high. PGM is cleared on reset.

0 Flash is not executing a program sequence.
1 Flash is executing a program sequence.

PSUS
28

Program Suspend
Writing to this bit has no effect, but the written data can be read back.

ERS
29

Erase

ERS sets up the Flash module for an Erase operation.

A 0-to-1 transition of ERS initiates an Erase sequence.

A 1-to-0 transition of ERS ends the Erase sequence.

ERS can be set only under User mode Read (PGM is low and UTO[AIE] is low). ERS can be cleared
by the user only when ESUS and EHV are low and DONE is high. ERS is cleared on reset.

0 Flash is not executing an Erase sequence.

1 Flash is executing an Erase sequence.

ESUS
30

Erase Suspend

ESUS indicates that the Flash module is in Erase Suspend or in the process of entering a Suspend
state. The Flash module is in Erase Suspend when ESUS = 1 and DONE = 1.

ESUS can be set high only when ERS =1 and EHV = 1, and PGM = 0.

A 0-to-1 transition of ESUS starts the sequence that sets DONE and places the Flash in erase
suspend. The Flash module enters Suspend within tggyg of this transition.

ESUS can be cleared only when DONE = 1 and EHV =1, and PGM = 0.

A 1-t0-0 transition of ESUS with EHV = 1 starts the sequence that clears DONE and returns the
Module to Erase.

The Flash module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.

0 Erase sequence is not suspended.
1 Erase sequence is suspended.

Doc ID 16912 Rev 5 345/936

Flash Memory

RMO0046

Table 149. MCR field descriptions (continued)

Field

Description

EHV
31

Enable High Voltage

The EHYV bit enables the Flash module for a high voltage program/Erase operation. EHV is cleared
on reset.

EHV must be set after an interlock write to start a program/Erase sequence. EHV may be set under
one of the following conditions:

— Erase (ERS =1, ESUS = 0, UTO[AIE] = 0)

— Program (ERS = 0, ESUS =0, PGM = 1, UTO[AIE] = 0)

In normal operation, a 1-to-0 transition of EHV with DONE high and ESUS low terminates the
current program/Erase high voltage operation.

When an operation is terminated, there is a 1-to-0 transition of EHV with DONE low and the
eventual Suspend bit low. A termination causes the value of PEG to be cleared, indicating a failing
program/Erase; address locations being operated on by the terminated operation contain
indeterminate data after a termination. A suspended operation cannot be terminated. Terminating a
high voltage operation leaves the Flash module addresses in an indeterminate data state. This may
be recovered by executing an Erase on the affected blocks.

EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be written
after ESUS is set and before DONE transitions high. EHV may not be cleared after ESUS is cleared
and before DONE transitions low.

0 Flash is not enabled to perform an high voltage operation.

1 Flash is enabled to perform an high voltage operation.

346/936

A number of MCR bits are protected against write when another bit, or set of bits, is in a
specific state. These write locks are covered on a bit by bit basis in the preceding
description, but those locks do not consider the effects of trying to write two or more bits
simultaneously.

The Flash module does not allow the user to write bits simultaneously which would put the
device into an illegal state. This is implemented through a priority mechanism among the
bits. Table 150 shows the bit changing priorities.

Table 150. MCR bits set/clear priority levels

Priority level MCR bits

1 ERS

PGM

2
3 EHV
4 ESUS

If the user attempts to write two or more MCR bits simultaneously, only the bit with the
lowest priority level is written.

Low/Mid Address Space Block Locking register (LML)

The Low/Mid Address Space Block Locking register provides a means to protect blocks from
being modified. These bits, along with bits in the SLL register, determine if the block is
locked from program or erase. An “OR” of LML and SLL determine the final lock status.
Identical LML registers are provided in the code Flash and the data Flash blocks.

Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

In the code Flash module, the LML register has a related Non-Volatile Low/Mid Address

Space Block Locking register (NVLML) located in TestFlash that contains the default reset
value for LML. The NVLML register is read during the reset phase of the Flash module and
loaded into the LML. The reset value is 0x00XX_XXXX, initially determined by the NVLML
value from test sector.

Figure 154. Low/Mid Address Space Block Locking register (LML)

Address: Base + 0x0004

0

1

2

11

Access: User read/write

R|LME| O 0 0 0 0 0 0 0 0 0 0 0 0
TSLK

w
Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK
w| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reset x X X X X X X X X X X X X X X X

Figure 155. Non-Volatile Low/Mid Address Space Block Locking register (NVLML)
Address: Base + 0x40_3DES8

Non-Volatile Low/Mid Address Space Block Locking register (NVLML)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TSLK
W
Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK | LLK
w| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reset x X X X X X X X X X X X X X X X
The NVLML register is a 64-bit register, the 32 most significant bits of which (bits 63:32) are
“don’t care” bits that are eventually used to manage ECC codes. Identical NVLML registers
are provided in the code Flash and the data Flash blocks.
Table 151. LML and NVLML field descriptions
Field Description
Low/Mid Address Space Block Enable
This bit enables the Lock registers (TSLK and LLK[15:0]) to be set or cleared by registers writes.
LMEM This bit is a status bit only. The method to set this bit is to write a password, and if the password
0 matches, the LME bit is set to reflect the status of enabled, and is enabled until a reset operation
occurs. For LME the password 0xA1A11111 must be written to the LML register.
0 Low Address Locks are disabled: TSLK and LLK[15:0] cannot be written.
1 Low Address Locks are enabled: TSLK and LLK[15:0] can be written.
110 Reserved (Read Only)
' A write to these bits has no effect. A read of these bits always outputs 0.

Doc ID 16912 Rev 5

347/936

Flash Memory RMO0046

Table 151. LML and NVLML field descriptions (continued)

Field Description

Test/Shadow Address Space Block Lock

This bit locks the block of Test and Shadow Address Space from program and Erase (Erase is any
case forbidden for Test block).

A value of 1 in the TSLK register signifies that the Test/Shadow block is locked for program and
Erase. A value of 0 in the TSLK register signifies that the Test/Shadow block is available to receive
program and Erase pulses.

TSLK The TSLK register is not writable once an interlock write is completed until MCR[DONE] is set at
11 the completion of the requested operation. Likewise, the TSLK register is not writable if a high
voltage operation is suspended.

Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK bit
may be written as a register. Reset will cause the bit to go back to its TestFlash block value. The
default value of the TSLK bit (assuming erased fuses) would be locked.

TSLK is not writable unless LME is high.

0 Test/Shadow Address Space Block is unlocked and can be modified (if also SLL[STSLK] = 0).
1 Test/Shadow Address Space Block is locked and cannot be modified.

Reserved (Read Only)
A write to these bits has no effect. A read of these bits always outputs 0.

14:15 Reserved

Low Address Space Block Lock 15-0

These bits lock the blocks of Low Address Space from program and Erase.

For code Flash, LLK[5:0] are related to sectors BOF[5:0], respectively. See Table 142 for more
information.

For data Flash, LLK[3:0] are related to sectors B1F[3:0], respectively. See Table 143 for more
information.

A value of 1 in a bit of the LLK bitfield signifies that the corresponding block is locked for program
and Erase.

A value of 0 in a bit of the LLK bitfield signifies that the corresponding block is available to receive
program and Erase pulses.

The LLK bitfield is not writable once an interlock write is completed until MCR[DONE] is set at the
completion of the requested operation. Likewise, the LLK bitfield is not writable if a high voltage
operation is suspended.

Upon reset, information from the TestFlash block is loaded into the LLK bitfields. The LLK bits
may be written as a register. Reset will cause the bits to go back to their TestFlash block value.
The default value of the LLK bits (assuming erased fuses) would be locked.

In the event that blocks are not present (due to configuration or total memory size), the LLK bits
will default to locked, and will not be writable. The reset value is always 1 (independent of the
TestFlash block), and register writes have no effect.

In the code Flash macrocell, bits LLK[15:6] are read-only and locked at 1.

12:13

LLK[15:0]
16:31

In the data Flash macrocell, bits LLK[15:4] are read-only and locked at 1.
LLK is not writable unless LME is high.

0 Low Address Space Block is unlocked and can be modified (if also SLL[SLK] = 0).
1 Low Address Space Block is locked and cannot be modified.

1. This field is present only in LML

348/936 Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

Secondary Low/Mid Address Space Block Locking register (SLL)

The Secondary Low/Mid Address Space Block Locking register provides an alternative
means to protect blocks from being modified. These bits, along with bits in the LML register,
determine if the block is locked from program or Erase. An “OR” of LML and SLL determine
the final lock status. Identical SLL registers are provided in the code Flash and the data
Flash blocks.

In the code Flash module, the SLL register has a related Non-Volatile Secondary Low/Mid
Address Space Block Locking register (NVSLL) located in TestFlash that contains the
default reset value for SLL. The reset value is 0OX00XX_XXXX, initially determined by
NVSLL.

The NVSLL register is read during the reset phase of the Flash module and loaded into the
SLL.

Figure 156. Secondary Low/mid address space block Locking reg (SLL)

Address: Base + 0x000C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R/ SLE| 0 0 0 0 0 0 0 0 0 [sTs| O 0 0 0

w LK
Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK
w| 15 | 14 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0
Reset x X X X X X X X X X X X X X X X

Non-Volatile Secondary Low/Mid Address Space Block Locking register

(NVSLL)

The NVSLL register is a 64-bit register, the 32 most significant bits of which (bits 63:32) are
“don’t care” bits that are eventually used to manage ECC codes. Identical NVSLL registers
are provided in the code Flash and the data Flash blocks.

Figure 157. Non-Volatile Secondary Low/Mid Address Space Block Locking register (NVSLL)

Address: Base + 0x40_3DF8

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl 0 0 0 0 0 0 0 0 0 0 |sTs| o 0 0 0
w LK

Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R| SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK | SLK
w15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Reset X X X X X X X X X X X X X X X X
KYI Doc ID 16912 Rev 5 349/936

Flash Memory RMO0046

Table 152. SLL and NVSLL field descriptions

Field Description

Secondary Low/Mid Address Space Block Enable

This bit enables the Lock registers (STSLK and SLK[15:0]) to be set or cleared by registers writes.
sSLEM This bit is a status bit only. The method to set this bit is to write a password, and if the password
matches, the SLE bit is set to reflect the status of enabled, and is enabled until a reset operation

0 occurs. For SLE the password 0xC3C3_3333 must be written to the SLL register.
0 Secondary Low/Mid Address Locks are disabled: STSLK and SLK[15:0] cannot be written.
1 Secondary Low/Mid Address Locks are enabled: STSLK and SLK[15:0] can be written.
110 Reserved (Read Only)

A write to these bits has no effect. A read of these bits always outputs 0.

Secondary Test/Shadow address space block LocK

This bit is used as an alternate means to lock the block of Test and Shadow Address Space from
program and Erase (Erase is any case forbidden for Test block).

A value of 1 in the STSLK bitfield signifies that the Test/Shadow block is locked for program and
Erase.

A value of 0 in the STSLK register signifies that the Test/Shadow block is available to receive
program and Erase pulses.

STSLK The STSLK register is not writable once an interlock write is completed until MCR[DONE] is set at
11 the completion of the requested operation. Likewise, the STSLK register is not writable if a high
voltage operation is suspended.

Upon reset, information from the TestFlash block is loaded into the STSLK register. The STSLK bit
may be written as a register. Reset will cause the bit to go back to its TestFlash block value. The
default value of the STSLK bit (assuming erased fuses) would be locked.

STSLK is not writable unless SLE is high.

0 Test/Shadow Address Space Block is unlocked and can be modified (if also LML[TSLK] = 0).
1 Test/Shadow Address Space Block is locked and cannot be modified.

Reserved (Read Only)

A write to these bits has no effect. A read of these bits always outputs 0.

14:15 Reserved

12:13

350/936 Doc ID 16912 Rev 5 KYI

RMO0046

Flash Memory

Table 152. SLL and NVSLL field descriptions (continued)

Field Description
Secondary Low Address Space Block Lock 15-0
These bits are used as an alternate means to lock the blocks of Low Address Space from program
and Erase.
For code Flash, SLK[5:0] are related to sectors BOF[5:0], respectively. See Table 142 for more
information.
For data Flash, SLK[3:0] are related to sectors B1F[3:0], respectively. See Table 143 for more
information.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for program
and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to receive
program and Erase pulses.
The SLK register is not writable once an interlock write is completed until MCR[DONE] is set at the

SLK[15:0] completion of the requested operation. Likewise, the SLK register is not writable if a high voltage
16:31 operation is suspended.

Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK bits
may be written as a register. Reset causes the bits to go back to their TestFlash block value. The
default value of the SLK bits (assuming erased fuses) would be locked.

In the event that blocks are not present (due to configuration or total memory size), the SLK bits
default to locked, and are not writable. The reset value will always be 1 (independent of the
TestFlash block), and register writes will have no effect.

In the code Flash macrocell, bits SLK[15:6] are read-only and locked at 1.

In the data Flash macrocell, bits SLK[15:4] are read-only and locked at 1.
SLK is not writable unless SLE is high.

0 Low Address Space Block is unlocked and can be modified (if also LML[LLK] = 0).
1 Low Address Space Block is locked and cannot be modified.

1. This field is present only in SLL

Low/Mid Address Space Block Select register (LMS)

The Low/Mid Address Space Block Select register provides a means to select blocks to be
operated on during erase. Identical LMS registers are provided in the code Flash and the
data Flash blocks.

Figure 158. Low/Mid Address Space Block Select register (LMS)
Address: Base + 0x0010 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl LSL | LSL | LSL | LSL |LSL|LSL|LSL|LSL|LSL|LSL|LSL|LSL|LSL|LSL|LSL]|LSL
w!| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

574

Doc ID 16912 Rev 5

351/936

Flash Memory RMO0046

Table 153. LMS field descriptions

Field Description
0:13 Reserved (Read Only)
’ A write to these bits has no effect. A read of these bits always outputs 0.

14:15 Reserved
Low Address Space Block Select 15-0
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value
for the select register is 0, or unselected.
For code Flash, LSL[5:0] are related to sectors BOF[5:0], respectively. See Table 142 for more
information.
For data Flash, LSL[3:0] are related to sectors B1F[3:0], respectively. See Table 143 for more
information.

LSL[15:0] The blocks must be selected (or unselected) before doing an erase interlock write as part of the

16:31 Erase sequence. The select register is not writable once an interlock write is completed or if a
high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding LSL bits will default to unselected, and will not be writable. The reset value will
always be 0, and register writes will have no effect.
In the code Flash macrocell, bits LSL[15:6] are read-only and locked at 0.
In the data Flash macrocell, bits LSL[15:4] are read-only and locked at 0.
0 Low Address Space Block is unselected for Erase.
1 Low Address Space Block is selected for Erase.

Address Register (ADR)

The Address Register provides the first failing address in the event module failures (ECC,
RWW, or FPEC) or the first address at which a ECC single error correction occurs.

Figure 159. Address Register (ADR)

Address: Base + 0x0018 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AD | AD | AD | AD | AD | AD | AD
RO O 0 0 0 0 10 10 10 15 |5 2| 19 18|17 | 16
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R AD | AD | AD | AD | AD | AD | AD | AD | AD | AD | AD | AD | AD 0 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 154. ADR field descriptions

Field Description
08 Reserved (Read Only)
' A write to these bits has no effect. A read of these bits always outputs 0.
352/936 Doc ID 16912 Rev 5 IS7]

RMO0046 Flash Memory

Tab